Appendix D12

Environmental Subsurface Materials Investigation and Analytical Letter Report

Watts Architects 95 Perry Street &Engineers Buffalo, NY 14203

Suite 300

120 East Washington Street Suite 414 Svracuse, NY 13202

325 Gold Street Suite 701 Brooklyn, NY 11201

Environmental Subsurface Materials Investigation and Analytical Letter Report

Steve Gauthier, PE To: Senior Structural Engineer LaBella Associates 300 State Street - Suite 201 Rochester, New York 14614 From: Matthew E. Holquist, CHMM December 1, 2023 Date: Subject: PIN 5512.52 Kensington Expressway Watts Project # 20220255 Environmental Subsurface Materials Investigation and Analytical Letter Report

Watts Architects & Engineers (Watts) is part of the Engineering Design team along with LaBella Associates (LaBella), the Prime Design Engineers for the New York State Department of Transportation (NYSDOT) Kensington Expressway (Rt. 33) Project (NYSDOT PIN 5512.52, D038277) within the City of Buffalo, Erie County, New York. Watts and MJW Companies (MJW) accompanied LaBella and CME Associates (CME) during the geotechnical drilling program to conduct an environmental subsurface investigation at select boring locations along the Route 33 roadway. Labella retained C.P. Ward to conduct the Work Zone Traffic Control (WZTC) during the geotechnical drilling program.

All exploratory borings conducted in support of the environmental investigation were completed by drilling through the Kensington pavement surface. Watts and MJW screened the returned upper 10 feet of the subsurface materials at each location (unless bedrock refusal was encountered) to identify concerns within the subsurface materials that could affect their handling, transportation, and disposal. Watts examined each location for petroleum contamination, evidence of fill, discoloration, odors, and the presence of slag. MJW examined each location for the presence of slag and associated elevated gamma readings indicative of potential radioactivity.

While the overall geotechnical drilling program involved a large number of drilling locations along the Route 33 roadway and the adjacent surface street areas, the environmental subsurface investigation was initially only inclusive of five (5) geotechnical boring locations. The five locations screened for environmental concerns and subsequently sampled included (from north to south along Route 33) FH-X-34e, FH-X-32e, FH-X-27e, FH-X-23e, and FH-X-07e. It was subsequently requested that Watts and MJW screen one additional location, FH-X-36, which was located west of the Route 33 Kensington Expressway roadway, along Riley Street. No evidence of contamination, slag, or radioactivity were observed at this additional location, thus no samples were collected, and no further actions were warranted.

MJW's scope of work included screening the returned materials for radioactivity when compared to background levels and the collection of bulk samples for analysis to determine if any of the slag materials present would be considered Technologically Enhanced Naturally Occurring Radioactive Material (TENORM). TENORM requires special disposal considerations when identified in New York State. MJW's interpretation associated with the analyzed samples can be found in a separate report.

Watts' scope of work included screening the returned soils for volatile organic compound vapors (VOCs) with a photoionization detector (PID) and assessing evidence of contamination based upon the PID readings or supported

PIN 5512.52 Kensington Expressway Watts Project # 20220255 Environmental Subsurface Materials Investigation and Analytical Letter Report

by visual and olfactory observations. Watts collected samples of the subsurface materials and submitted the samples to a laboratory for analysis and comparison to United States Environmental Protection Agency (USEPA) Resource Conservation and Recovery Act (RCRA) regulatory criteria for disposal purposes. Details regarding observations and the analytical results are discussed below. The analytical results are also summarized in **Table 1** - **Analytical Detections and Comparison to RCRA Criteria of the Expressway Roadway Subsurface Materials**, which is attached to this letter report.

In general, the following observations, interval sampled, and analytical results were noted for each of the five (5) boring locations that were part of the original work plan:

FH-X-34e

Road materials (asphalt and concrete) were approximately 1.1' thick. Roadway sub-base materials that included engineered gravel fill and/or blast rock from the original Kensington Expressway construction with mixed Silt and Sand fines were observed down to a depth of approximately 5.3' below ground surface. A few trace pieces of asphalt and slag were observed within the roadway sub-base layer. Bedrock was encountered at approximately 5.3' below ground surface. Sample 20220255-FH-X-34e was composited from 1.0' to 5.5' below ground surface (bgs) with the VOC portion collected from the bottom of the interval. Based upon the analytical results, the subsurface material associated with this sample would not be considered hazardous waste when disposed of.

FH-X-32e

Road materials (asphalt and concrete) were approximately 1.1' thick. Roadway sub-base materials that included engineered gravel fill and/or blast rock from the original Kensington Expressway construction with mixed Silt and Sand fines were observed down to a depth of approximately 2.9' below ground surface. No foreign fill materials were observed within the roadway sub-base layer. Bedrock was encountered at approximately 2.9' below ground surface. Sample 20220255-FH-X-32e was composited from 1.1' to 2.9' bgs with the VOC portion collected from the bottom of the interval. Based upon the analytical results, the subsurface material associated with this sample would not be considered hazardous waste when disposed of.

FH-X-27e

Road materials (asphalt and concrete) were approximately 1.1' thick. Roadway sub-base materials that included engineered gravel fill and/or blast rock from the original Kensington Expressway construction with mixed Silt and Sand fines were observed down to a depth of approximately 5.5' below ground surface. A few trace pieces of slag were observed within the roadway sub-base layer. Bedrock was encountered at approximately 6.2' below ground surface. Due to a large piece of gravel retrieved at the bottom of the split spoon sampler, the materials between 5.5' and 6.2' below ground surface could not be recovered for observation, however, all materials that were brought up during auguring were consistent with those materials observed from the boring above. Sample 20220255-FH-X-27e was composited from 1.1' to 5.5' bgs with the VOC portion collected from the bottom of the interval. Based upon the analytical results, the subsurface material associated with this sample would not be considered hazardous waste when disposed of.

FH-X-23e

Road materials (asphalt and concrete) were approximately 1.2' thick. Roadway sub-base materials that included engineered gravel fill and/or blast rock from the original Kensington Expressway construction with mixed Silt and Sand fines were observed down to a depth of approximately 4.5' below ground surface. No foreign fill materials were observed within the roadway sub-base layer. Native glacial till consisting of silty Clay with gravel was observed between 4.5' and 6.0' below ground surface. Bedrock was encountered at approximately 6.0' below ground surface. Sample 20220255-FH-X-23e was composited from 1.8' to 5.0' bgs with the VOC portion collected from the bottom of the interval. Based upon the analytical results, the subsurface material associated with this sample would not be considered hazardous waste when disposed of.

Watts Architects &Engineers

PIN 5512.52 Kensington Expressway Watts Project # 20220255 Environmental Subsurface Materials Investigation and Analytical Letter Report

FH-X-07e

Road materials (asphalt and concrete) were approximately 1.1' thick. Approximately 0.9' of brown Sand roadway sub-base was observed directly beneath the roadway materials. A 0.4' thick layer of fine Sand, gravel, and slag fill was observed beneath that. From approximately 2.4' to 9.1' below ground surface, native glacial till materials were layered. Some of the native glacial till materials were potentially reworked, however no evidence of contamination was observed. A confining layer of glacial silty Clay was observed at the bottom of the boring between 8.0' and 9.1' below ground surface. Sample 20220255-FH-X-07e was composited from 1.1' to 8.0' bgs with the VOC portion collected from the bottom of the interval. Based upon the analytical results, the subsurface material associated with this sample would not be considered hazardous waste when disposed of.

There were no identified concerns or observations of elevated volatile vapor readings, obvious odors, signs of contamination, or widespread slag deposits during this limited investigation of the materials that were returned to the surface for characterization. See the **Photos Pages** attached to this letter report which includes photos taken by Watts during the subsurface sampling event. Refer to the **Field Boring Logs and Field Notes** for additional boring information and the complete **Alpha Analytical Laboratory Report** that is also attached to this letter report.

Sincerely,

WATTS ARCHITECTS & ENGINEERS, D.P.C.

Matthew E. Holguit

Matthew E. Holquist, CHMM Associate, Sr. Environmental Consultant

Attachments:

- Table 1 Analytical Detections and Comparison to RCRA Criteria of the Expressway Roadway Subsurface Materials
- Photo Pages
- Field Boring Logs and Field Notes
- Complete Laboratory Analytical Report

Table 1 - Analytical Detections and Comparison to RCRA Criteria of the Expressway Roadway Subsurface Materials Kensington Expressway (Rt. 33) Project (NYSDOT PIN 5512.52, D038277) City of Buffalo, Erie County, New York

Sample ID		20220255-FH	I-X-27e	20220255-FH	-X-23e	20220255-FH-	-X-32e	20220255-FH-X-34e		20220255-FH	-X-07e		
Lab Sample ID		L2351522	2-01	L2351914	-01	L2352639-	-01	L2352639	L2352639-02 L2353274-01			Resource Conservation Recovery Act (RCRA) Toxicity Characteristic	
Sample Location		FH-X-27	7	FH-X-23		FH-X-32		FH-X-34		FH-X-07	,	Units	Leachate Procedure (TCLP) Hazardous Waste Criteria
Sample Depth:		1.1' - 5.5	5'	1.8' - 5.0	y'	1.1' - 2.9	ı	1.0' - 5.5	ı	1.1' - 8.0)'	Units	
Sample Date:		9/6/202	23	9/7/202	3	9/11/202	23	9/11/202	3	9/13/202	23		Regulatory Level (mg/L)
													Regulatory Level (hig/L)
Analyte	CAS Number	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual		
/olatiles (parts per million)													
None Detected													
emivolatiles (parts per million)													
None Detected													
Pesticides (parts per million)													
None Detected													
chlorinated Herbicides													
None Detected													
letals (parts per million)													
rsenic, Total	7440-38-2	-		0.0346	J	-		-		-		mg/L	5
arium, Total	7440-39-3	0.435	J	0.753		0.285	J	0.328	J	0.715		mg/L	100
admium, Total	7440-43-9	-		-		-		-		-		mg/L	1
hromium, Total	7440-47-3	-		-		-		-		-		mg/L	5
ead, Total	7439-92-1	-		-		-		-		-		mg/L	5
1ercury, Total	7439-97-6	-		-		-		-		-		mg/L	0.2
Selenium, Total	7782-49-2	-		-		-		0.0354	J	-		mg/L	1
Silver, Total	7440-22-4	-		-		-		-		-		mg/L	5
General Chemistry													
olids, Total	NONE	97.8		96.4		89		89.9		88.4		%	N Sp
orrosivity (pH)*	12408-02-5	9.96		9.48		10.9		11		9.44		SU	$pH \le 2.0 \text{ or } pH \ge 12.5$
ulfide, Reactive	NONE	NR		NR		NR		51		NR		mg/kg	N Sp
Cyanide, Reactive	57-12-5	NR	<u> </u>	NR		NR		NR		NR		mg/kg	N Sp
gnitability	NONE	NI		NI		NI		NI		NI			Flashpoint < 60 °C
Reference Standard based on Re													
Bold and Colored	- exceeds the appli												
_aboratory Code:	J = Estimated value	e. The target ana	lyte conc	entration is below			, but abo	ve the Method De	tection L	.imit (MDL).			
Notes:	- = Not Detected				N Sp = I	Not Specified							

- = Not Detected N Sp = Not Specified

*Reference Standard Based on Resource Conservation Recovery Act (RCRA) Hazardous Waste Criteria for Corrosivity.

NI = Non-Ignitable

NR = Non-Reactive

Photo 1 – Work Zone Traffic Control (WZTC) was conducted by C.P. Ward.

Photo 2 – CME setting up the drill rig within the left lane of the westbound traffic (with WZTC) along Route 33, Kensington Expressway for the geotechnical and environmental investigation.

Watts

Photo 3 – CME coring through the asphalt/concrete roadway layer prior to utilizing the hollowstem drilling augers and split-spoon sampler to retrieve the subsurface soils.

Photo 4 – Engineered fill / blast rock present beneath the asphalt/concrete roadway surface at FH-X-27e.

Watts

					BOF	RING LOG
		Rig: CME	-550.5		Date Dril	
		Dia: 3'' 5	plit spoo	n	Boring N	lumber: pre-27 MEH /NY
Sample	Depth	Blow	PID	Recovery	USCS	0'-0.4' asphalt Add 1.1' bas to 0.1-1.1' concrete Description each spanning (Astspan-1.1'=3.1')
Iple	(feet)	Counts	(ppm)		Symbol	(Astspen-1.1'=3.1')
	1	15				0-1.4' brown silty Fines, trave sund, and fine to med gravel subbase. trave (Engineered F.11/Blast Rock)
		46	0	1.4		Fire to med growel subbase trace (Engineerod E) / Rimin a
-	2	23				
	3	21	0	11		grey/brown sitts fines, trace sands, and gravels (Engineered fill/Blastrock)
	4	60/1"		(.)	· · · · ·	Spoon refusal (@ 1.1
	5	60/5"	D	i i		few large pleces of gravel, course
	5		0	0.2'		
_	6			-		Spoon refusal @ 0.5'
	7					
	8					
	0					
	9					
	10					
	11	1				
	12					
	13					
	13					
-	14					
	15		1			
	16		-			
Site Drawi	ng:					Completion Notes: After clearing augers for coring, depth to bicdrock determined to be 6.2 bgs Engineered Fill / Blast rock throughout Ft 2 - Ft 3 FH composite sample 20 220255 - 94-X-27 from 1.1 to 5.51 Site: NYS 37 Kensington WB lones Project No: 20220255 Page J

					BOF	RING LOG	
		Rig: CME-	500 5			led: 7-7-23	Logged By:
		Dia:	2.50 -		Boring N	umber. 2x/ X-23	NY
Sample	Depth (feet)	Blow Counts	PID (ppm)	Recovery	USCS Symbol	0.4 asphatt Des	scription
	1.8 1.8 3.2	19 31 50/7"	0	1.3		Q-13 engineer with bre	nd fill mixed wh silt a trace sand
	300	12	0	2.0		0-0,5 Same a 0:5-2 - nate	
	5	10				pedrock	osit stiff
	6					Proceed	
-	7						
	8				1		
	9						
	11						
_	12						
	13						
	14						
-	15				17-17		
Site Drav	ving:					Concrete debris in before stourting scence at 4 At	t sleeve (3.2) was evel to be auguard out again - started 2nd n 1.8' to see 15'
						Project No: 20220255	Page Z

					BOF	RING LOG
			- 550-5			led: 9(11/23 Logged By:
		Dia: 31			Boring N	umber HB-AN-X-32 MEH
Sample	Depth (feet)	Blow Counts	PID (ppm)	Recovery	USCS Symbol	add 1'1" = 0.4'-asphalt 1.1-concrete
	1	17 23 50/2"	0	1.4		1'1' = 0.4'-asphalt 1'1' = 0.4'-asphalt 0-1.4 - grey sand \$5.1+ and gravel Engineered Fill subbase Bedrock@ 2.9' bgs
	2					Vearock (e 2,1 bg)
-	4					
	5					
	6					
	7					
	8					
	9			1		
	10					
	11					
	12					
	13		5			
	14					
	15					
Site Drawi						Completion Notes: Bedrock @ @ 2,9 'bgs Asphalt 2 concrete to 1.1' bgs. Engreened fill below Sample the engineered fill 20220255-50-X-32 from 1.1'-2.9' Voc from bottom of splitspoon. Site: NYS Rt 33 - Kensington WB, Not Ferry St. Bridge. Project No: 20220255 Page 3

_					BOF	RING LOG	
		Rig: CME-	550-5		Date Dril	led: 9/11/23	Logged By:
	- -	Dia: 3" \$		2	Boring N	umberFAL- 4- 34	MEH
Sample	Depth (feet)	Blow Counts	PID (ppm)	Recovery	USCS Symbol		ld I' to split spoon bgs
	1	21 43 26/2" 10/0	. D	1.3		0.0- (.3 Engine grey Sil Split spoon refuse	eoied Fill /Blast Rock ts c. Sunds and gruvel (fine bo 2") 1 @ 14" : Then auger bo3"
	3	19 18 50/4"	0	1.2		ADV17 Same	ul some Fill niked that pieces, traceslag) un sand 2 16. Then age-to 5' Full had tre ce granitet gravel, some brown sund.
	5	50/5"	0	0.5		0.0-0.5' Same Mica	grovel, some brown sand.
	6	I			-		
	7		2				
2	8						
	9						· · ·
	10						
2.1	11						
	12)	
-	13						
	14			-			
	15						
C11	16				1	Completion Notes:	
Site Drawi	ng:					Bedrouk at 5 11:30 Sample 20220255 1.0'-5.5' Engineered Foll/Bl w/ little/trac	.5 bys. FH 5-b+-X-34 from bys w (voc from bottom ast Rack throughout general c Fill items ingtur., north of E.Feryst.

						RING LOG
	-	Rig: CME	-550-5			lled: 9 3 23 Logged By:
		Dia: 3"50	plit spoon		Boring N	lumber: FHAN-X-07 WELt
Sample	Depth (feet)	Blow Counts	PID (ppm)	Recovery	USCS Symbol	0-0.4'-asphilt Add 1.1 bgs to 0.4-1.1'-concel@escription spoon depths.
Ð	()	11	(PP)		Symbol	
-	1	36	\sim	2 0		0.0-0.9 - brown F-M sand, mist 0.9-1.3 - Fine sand & Gaarel and Slag Fill
		21		2.0		1.3-2.0 - reddish brown silty Clar L'II
+	2	22			-	1.3-2.0 - reddish brown silty Clay till trace gravels metted, hard till 0.0-0.3 - Same
	3	16	0	1.3		p.3-12 condict brown silts & chargey
_	4	15	. 0	1.7		Sigts, frace course grevel.
+	4	8.				Si)fs, trace coarse grevel. difficult to tell if native in-sition potentially reworked imported as or glacial outwash.
	5	13	\cap	1.9		0.0-0.4-same of glacial outrash.
-	6	10		1.1		0.4-1.9 - brown von fine s. Ity said, trace fine gro appears native insite.
+	0	ls Q				0.0-0.7 - brown Silt & course - fine gravels glacial outwash?
	7	6	0	2.0		glacial ovitwash?
+	8	7				0.7 0.8 - redaish brown silty Clay soft 0.8 - 0.9 - brown sandy Silt 0.9 - 20 - Sift Silty Clay brown to reddo brown.
		12				pg-70 - Sift Silta Clan brown to redd.
+	9					brown-
+	10	-				
-			1			
+	11					-
1	12					
+	13					
	10					
-	14					-
+	15			100		<u> </u>
	10					
	16	1				Completion Notes:
wir	ng:	state that	DN' in 1	namins stru	uture	
	c	sote that . haged to	FH' by	DoT & add	e afertan	with the drilles / Geotech spoon in tervals chore
	h	IN LD C	- this lo	cations		completion to 9,1 695 which is fine an
	U	scw ID for	F	-H-X-0	7e'	The native materials observed & confining layer
	1.1					observal from 8,01-9.1 bgs.
1:1	5	2022025	TAFH->	(-D70		Simple 20220255 - FH - X-07 e collected for composite 1.1 to 8.0 bgs, voc grab from
2	ample	00000	5 /	i Uit.		hottom.
						Site: NYS Rt. 33 Konsington WB, LT Lane
						between Dodge & Northumpton Bridges
_						Project No: 20226255 Page 5

9/6/23 20220255 Kensington O Sunny 80's NYS Rt 3) ~ 9:00 Load Watts Fruck and mabilize @ Rally Paint, Discuss scope of work of 14:15 Firsh and return to office plug fir the 5 " Environmental Boxings" Labella à CME planson -Foday will include DN-X-27 locator starting the next "environmental hile" within MYS Ab 33 WB between E. Farry tommorrow (9/7/23) and meeting a. E. Otica pridges Meet al Alex Bartels ? at Best Museum rally point @ Paul Koch from MOW, Al Linstrutics 9:30. Villadvise if changes. 10:15 MAF Ryan Cusateldi From CME 2 -Dave Keller w/ Libella MPT provided 2-1 by CP ward. Calibrate PID 10:15 MPT. Zone set up. All mibilize to DN-X-27 2-5 10:55 CME hegins coring with 6" 8-8 coring tool through asphall & concrete J Y 12:30 clean equipment, denobilize from sole Simple: 20220255- DN-X-27 @ 12:00 from 1's' to 5.5' 13:55 Pickup supplies 2 drep gample oft at Alpha Analytical 9-6 Scale: 1 square = _ Rete in the Rain. Scale: 1 square =

10 2-1-25 Zo220255 Kensington	NYS Toute 33	Cloud of To's (1)
at the note on tensington between		
biBest st exit & utica bridge.		
met w/ paul Koch, Ryan d		
dave, hole DN-23:		
His and all her here is		
Cured thru asphat & concrete		
1215 clean requipment Sample 20220255-PN-X-23		
at 1200		
1930 drop als paul at office of		
- drop samples at alpha		
1430 finish, labella & cyc		
plans on starting next baring		
ally point (1-23), much at		
Scale: 1 square =	Scale: 1 square =	Rite in the Rain

	NYS 33 Kenington
(12) 9/11 2023 20220253 Kensinfon putty change	9/13/23 Clear high 60's (B)
	B:20 Andilize encionent go conting
08:30 Mobilite aquipment then pick up	Det (9:20) & meet w/ Paul Fouring
MJW age prient at colleagers hause who is	2 Draise wil LaBella to prep to comprese 121
Taking The Wans Much Congrade Period	'environmental hole' - DN-X-07
week, N.Y. left the MJU equipart in the	
Watts truck. MH depart for project.	10:00 MPT ready Depart rally point for
	DN-X-07, located between Norshittaupton
09:15 Arrive at Rally Point Q. Buttalo Siere Moseury Calibrate PID & prep equipment.	DN-2-01, located borocol
Museum Calibrate PID & prepequipmit.	2. Podge st. bridges in LT lane of WB
	traffic Noming structure was changed
A A A A A A A A A A A A A A A A A A A	
MPT area north of E.Ferry St. bridge	1 il mans hollow Sten auger in any
	a linercase e affer the samp rece
	New ID For this location. FH NO 12
10:35 Sample 20220255-BN-X-32	and the matching of the state o
10:35 Sample 20220255-BN-X-32 From 1.1-29. Noc from Sottoms	11:20 Sample 20220255 - FH-X-07e:
	(oman te 11 - 00 095, 000 900, 000
10:55 - Mobilize La B-AN-X-34, in	11:35 Loon PEV Darent, a PARODICE From Sille
10:55 - Mobilize La B-AN-X-34, in WB lanes north of E.Ferry St.	Drive Parl from MJW back. Finalize reporting
11:30 Sumple 20220255-DN-X-34 from	
11:30 Sumple 20220255-DN-X-34 from 1.0"-5.5'bys w/ Voc From botton	12:25 Drop off sample Q Alpha Analytical.
	12:05 Drop on surpre on pro-
13:20 Clean en inquist devobilize finalize	ince A die tribite Dendalte exponents
13:20 Clean equipment, demobilize, finalize reporting, dropott Paul Koch (MTW),	12:50 Return & Watts, Demobilize egropment.
deiver samples to Alpha Analytical.	
	0.0
	Scale: 1 square = Kite in the Natur
Scale: 1 square =	

10/17/23 20220255 Kensington Cloudy ~12:50 PM Matt Holguist from Watts onsite at the regest of David Keller from Labella (Geotechnical Engineer) due to potential slag. FH-X-36 located along suiface stigety. ut the west side of Kensington at Riley St. DK previously observed potential slag at a new by geotechnical boring and nanted Watts EMJW to double check the subsurface conditions 0.0-0.3 asphalt 0.3-0.8 subbase with grave 1 ft race slag. (no radioactivity ident. Fied by MJW) - split span 1-3' bys 1-3 Fill (tracestay, asphalt pieces, growel dork grey silty sundy clay) typical - 5' splitspoon 30'-3.5' same 3.5'-5.0' red brown silty clay till, nottled, track organics, appears native/in-situ. PID = O for all No significant contamination observal. Very Frace slag 2 typical UCban Fill. - MH offsite Scale: 1 square = ____ Rite in the Rain

ANALYTICAL REPORT

	Lab Number:	L2351522
	Client:	Watts Architecture & Engineering P.C 95 Perry Street Suite 300 Buffalo, NY 14203
	ATTN: Phone:	Andrew Klimek (716) 206-5100
	Project Name: Project Number: Report Date:	KENSINGTON, NYS RT. 33. 20220255 09/20/23
1		

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09202314:59

Project Name:	KENSINGTON, NYS RT. 33.
Project Number:	20220255

 Lab Number:
 L2351522

 Report Date:
 09/20/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2351522-01	20220255-FH-X-27E	SOIL	BUFFALO, NY	09/06/23 12:00	09/06/23

Project Name:KENSINGTON, NYS RT. 33.Project Number:20220255

Lab Number: L2351522 Report Date: 09/20/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: KENSINGTON, NYS RT. 33. Project Number: 20220255
 Lab Number:
 L2351522

 Report Date:
 09/20/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2351522-01: The Client ID was specified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 09/20/23

ORGANICS

VOLATILES

	Serial_No:09202314:59	
KENSINGTON, NYS RT. 33.	Lab Number: L2351522	
20220255	Report Date: 09/20/23	
SAMPLE RESUL	LTS	
L2351522-01	Date Collected: 09/06/23 12:00	
20220255-FH-X-27E	Date Received: 09/06/23	
BUFFALO, NY	Field Prep: Not Specified	
Soil		
1,8260D		
09/20/23 08:05		
MCM		
98%		
te: 09/19/23 06:48		
1	20220255 SAMPLE RESUL 20220255-FH-X-27E BUFFALO, NY Soil 1,8260D 09/20/23 08:05 MCM 98%	KENSINGTON, NYS RT. 33. Lab Number: L2351522 20220255 SAMPLE RESULTS 09/20/23 L2351522-01 Date Collected: 09/06/23 12:00 20220255-FH-X-27E Date Received: 09/06/23 BUFFALO, NY Field Prep: Not Specified Soil 1,8260D 09/20/23 08:05 MCM 98% 98%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
TCLP Volatiles by EPA 1311 - We	stborough Lab					
Chloroform	ND		ug/l	7.5	2.2	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	5.0	1.8	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
Benzene	ND		ug/l	5.0	1.6	10
Vinyl chloride	ND		ug/l	10	0.71	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,4-Dichlorobenzene	ND		ug/l	25	1.9	10
2-Butanone	ND		ug/l	50	19.	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	88		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	102		70-130	
dibromofluoromethane	94		70-130	

Project Name:KENSINGTON, NYS RT. 33.Lab Number:Project Number:20220255Report Date:

 Lab Number:
 L2351522

 Report Date:
 09/20/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260D
Analytical Date:	09/20/23 04:53
Analyst:	MCM
TCLP/SPLP Extraction Date:	09/19/23 06:48

Extraction Date: 09/19/23 06:48

arameter	Result	Qualifier Units	RL	MDL	
CLP Volatiles by EPA 1311 - W	/estborough La	b for sample(s):	01 Batch:	WG1829690-5	
Chloroform	ND	ug/l	7.5	2.2	
Carbon tetrachloride	ND	ug/l	5.0	1.3	
Tetrachloroethene	ND	ug/l	5.0	1.8	
Chlorobenzene	ND	ug/l	5.0	1.8	
1,2-Dichloroethane	ND	ug/l	5.0	1.3	
Benzene	ND	ug/l	5.0	1.6	
Vinyl chloride	ND	ug/l	10	0.71	
1,1-Dichloroethene	ND	ug/l	5.0	1.7	
Trichloroethene	ND	ug/l	5.0	1.8	
1,4-Dichlorobenzene	ND	ug/l	25	1.9	
2-Butanone	ND	ug/l	50	19.	

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	86		70-130
Toluene-d8	95		70-130
4-Bromofluorobenzene	105		70-130
dibromofluoromethane	93		70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255

Parameter

Lab Number: L2351522 Report Date: 09/20/23

LCSD %Recovery RPD %Recovery Limits Qual RPD Qual Limits

TCLP Volatiles by EPA 1311 - Westborough Lab Associated sample(s): 01 Batch: WG1829690-3 WG1829690-4

Qual

LCS

%Recovery

Chloroform	93		89		70-130	4	20
Carbon tetrachloride	87		86		63-132	1	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	100		100		75-130	0	25
1,2-Dichloroethane	84		84		70-130	0	20
Benzene	98		97		70-130	1	25
Vinyl chloride	47	Q	46	Q	55-140	2	20
1,1-Dichloroethene	90		92		61-145	2	25
Trichloroethene	89		89		70-130	0	25
1,4-Dichlorobenzene	100		100		70-130	0	20
2-Butanone	98		110		63-138	12	20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria
1,2-Dichloroethane-d4	75	76	70-130
Toluene-d8	99	97	70-130
4-Bromofluorobenzene	105	102	70-130
dibromofluoromethane	90	87	70-130

SEMIVOLATILES

			Serial_No	09202314:59
Project Name:	KENSINGTON, NYS RT. 33.		Lab Number:	L2351522
Project Number:	20220255		Report Date:	09/20/23
	S	AMPLE RESULTS		
Lab ID:	L2351522-01		Date Collected:	09/06/23 12:00
Client ID:	20220255-FH-X-27E		Date Received:	09/06/23
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	I: EPA 3510C
Analytical Method:	1,8270E		Extraction Date:	09/11/23 22:12
Analytical Date:	09/13/23 00:47			
Analyst:	IM			
Percent Solids:	98%			
TCLP/SPLP Ext. Da	ate: 09/07/23 18:56			

Result	Qualifier	Units	RL	MDL	Dilution Factor
borough Lab					
ND		uq/l	10	3.4	1
ND		ug/l	25	1.9	1
ND		ug/l	10	3.0	1
ND		ug/l	10	2.2	1
ND		ug/l	10	3.3	1
ND		ug/l	25	2.5	1
ND		ug/l	50	9.8	1
ND		ug/l	25	5.5	1
ND		ug/l	25	2.8	1
ND		ug/l	25	1.9	1
ND		ug/l	18	4.5	1
	borough Lab ND ND ND ND ND ND ND ND ND ND ND ND	borough Lab ND	borough Lab ND ug/l ND ug/l	ND ug/l 10 ND ug/l 25 ND ug/l 10 ND ug/l 50 ND ug/l 50 ND ug/l 25 ND ug/l 25	ND ug/l 10 3.4 ND ug/l 25 1.9 ND ug/l 10 3.0 ND ug/l 10 3.0 ND ug/l 10 2.2 ND ug/l 10 2.2 ND ug/l 10 3.3 ND ug/l 50 9.8 ND ug/l 50 9.8 ND ug/l 25 5.5 ND ug/l 25 2.8 ND ug/l 25 1.9

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	82	21-120	
Phenol-d6	72	10-120	
Nitrobenzene-d5	83	23-120	
2-Fluorobiphenyl	87	15-120	
2,4,6-Tribromophenol	93	10-120	
4-Terphenyl-d14	85	33-120	

Lab Number:

Report Date:

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255

Method Blank Analysis Batch Quality Control

Analytical Method:1,8270EAnalytical Date:09/12/23 23:10Analyst:IMTCLP/SPLP Extraction Date:09/07/23 18:56

Extraction Method:EPA 3510CExtraction Date:09/11/23 22:12

L2351522

09/20/23

arameter	Result 0	Qualifier Units	RL	MDL
CLP Semivolatiles by EPA 1311	- Westborough	Lab for sample(s):	01 Batch:	WG1826211-1
Hexachlorobenzene	ND	ug/l	10	3.4
2,4-Dinitrotoluene	ND	ug/l	25	1.9
Hexachlorobutadiene	ND	ug/l	10	3.0
Hexachloroethane	ND	ug/l	10	2.2
Nitrobenzene	ND	ug/l	10	3.3
2,4,6-Trichlorophenol	ND	ug/l	25	2.5
Pentachlorophenol	ND	ug/l	50	9.8
2-Methylphenol	ND	ug/l	25	5.5
3-Methylphenol/4-Methylphenol	ND	ug/l	25	2.8
2,4,5-Trichlorophenol	ND	ug/l	25	1.9
Pyridine	ND	ug/l	18	4.5

	Acceptance
%Recovery	Qualifier Criteria
92	21-120
82	10-120
95	23-120
100	15-120
106	10-120
98	33-120
	92 82 95 100 106

Lab Control Sample Analysis Batch Quality Control

Project Number: 20220255 Lab Number: L2351522 09/20/23

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
TCLP Semivolatiles by EPA 1311 - Westbo	rough Lab Assoc	iated sample(s)	: 01 Batch:	WG1826211-	2 WG1826211-3	3		
Hexachlorobenzene	74		85		40-140	14		30
2,4-Dinitrotoluene	85		99		40-132	15		30
Hexachlorobutadiene	81		92		28-111	13		30
Hexachloroethane	64		70		21-105	9		30
Nitrobenzene	72		85		40-140	17		30
2,4,6-Trichlorophenol	88		102		30-130	15		30
Pentachlorophenol	90		108	Q	9-103	18		30
2-Methylphenol	66		79		30-130	18		30
3-Methylphenol/4-Methylphenol	68		80		30-130	16		30
2,4,5-Trichlorophenol	88		102		30-130	15		30
Pyridine	43		33		10-66	26		30

•	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
2-Fluorophenol	74	86	21-120
Phenol-d6	65	78	10-120
Nitrobenzene-d5	76	91	23-120
2-Fluorobiphenyl	77	92	15-120
2,4,6-Tribromophenol	83	96	10-120
4-Terphenyl-d14	73	87	33-120

PESTICIDES

			Serial_No	:09202314:59
Project Name:	KENSINGTON, NYS RT. 33		Lab Number:	L2351522
Project Number:	20220255		Report Date:	09/20/23
		SAMPLE RESULTS		
Lab ID:	L2351522-01		Date Collected:	09/06/23 12:00
Client ID:	20220255-FH-X-27E		Date Received:	09/06/23
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3510C
Analytical Method:	1,8081B		Extraction Date:	09/11/23 21:44
Analytical Date:	09/12/23 10:42			
Analyst:	AKM			
Percent Solids:	98%			
TCLP/SPLP Ext. Da	ate: 09/07/23 18:56			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
TCLP Pesticides by EPA 1311 - Wes	tborough Lab						
Lindane	ND		ug/l	0.100	0.022	1	А
Heptachlor	ND		ug/l	0.100	0.016	1	А
Heptachlor epoxide	ND		ug/l	0.100	0.021	1	А
Endrin	ND		ug/l	0.200	0.021	1	А
Methoxychlor	ND		ug/l	1.00	0.034	1	А
Toxaphene	ND		ug/l	1.00	0.314	1	А
Chlordane	ND		ug/l	1.00	0.232	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	83		30-150	А
Decachlorobiphenyl	91		30-150	А
2,4,5,6-Tetrachloro-m-xylene	84		30-150	В
Decachlorobiphenyl	98		30-150	В

		Serial_No:09202314:59
Project Name:	KENSINGTON, NYS RT. 33.	Lab Number: L2351522
Project Number:	20220255	Report Date: 09/20/23
	SAMPLE RESULTS	
Lab ID:	L2351522-01	Date Collected: 09/06/23 12:00
Client ID:	20220255-FH-X-27E	Date Received: 09/06/23
Sample Location:	BUFFALO, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 8151A
Analytical Method:	1,8151A	Extraction Date: 09/08/23 14:55
Analytical Date:	09/10/23 13:28	
Analyst:	EJL	
Percent Solids:	98%	
TCLP/SPLP Ext. Da	ate: 09/07/23 18:56	
Methylation Date:	09/09/23 05:50	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
TCLP Herbicides by EPA 131	1 - Westborough Lab						
2,4-D	ND		mg/l	0.025	0.001	1	A
2,4,5-TP (Silvex)	ND		mg/l	0.005	0.001	1	А
Surrogate			% Recovery	Qualifier		eptance riteria Co	lumn
DCAA			55		;	30-150	A

52

DCAA

30-150

В

Project Name:	KENSINGTON, NYS RT. 33.	Lab Number:	L2351522
Project Number:	20220255	Report Date:	09/20/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8151A	Extraction Method:	EPA 8151A
Analytical Date:	09/10/23 12:32	Extraction Date:	09/08/23 14:55
Analyst:	EJL		
TCLP/SPLP Extraction Date:	09/06/23 23:02		
Methylation Date:	09/09/23 05:50		

Parameter	Result	Qualifier	Units		RL	MDL	Column
TCLP Herbicides by EPA 13	11 - Westborough	Lab for sam	nple(s):	01	Batch:	WG1825329-1	
2,4-D	ND		mg/l		0.025	0.001	А
2,4,5-TP (Silvex)	ND		mg/l		0.005	0.001	А

Surrogate	%Recovery	Qualifier	Criteria	Column
DCAA	48		30-150	А
DCAA	44		30-150	В

Project Name:KENSINGTON, NYS RT. 33.Lab Number:Project Number:20220255Report Date:

Method Blank Analysis Batch Quality Control

 Analytical Method:
 1,8081B

 Analytical Date:
 09/12/23 10:06

 Analyst:
 AKM

 TCLP/SPLP Extraction Date:
 09/06/23 23:02

Extraction Method:EPA 3510CExtraction Date:09/11/23 21:44

L2351522

09/20/23

Parameter	Result	Qualifier	Units		RL	MDL	Column
TCLP Pesticides by EPA 131	1 - Westborough I	Lab for sam	nple(s):	01	Batch:	WG1826208-1	
Lindane	ND		ug/l		0.100	0.022	А
Heptachlor	ND		ug/l		0.100	0.016	А
Heptachlor epoxide	ND		ug/l		0.100	0.021	А
Endrin	ND		ug/l		0.200	0.021	А
Methoxychlor	ND		ug/l		1.00	0.034	А
Toxaphene	ND		ug/l		1.00	0.314	А
Chlordane	ND		ug/l		1.00	0.232	А

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	75		30-150	А	
Decachlorobiphenyl	87		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В	
Decachlorobiphenyl	94		30-150	В	

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255

 Lab Number:
 L2351522

 Report Date:
 09/20/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recover	y Qual	Limits	RPD	Qual	Limits	Column
TCLP Herbicides by EPA 1311 - Westbord	ough Lab Associat	ed sample(s):	01 Batch:	WG1825329-2	WG1825329-3				
2,4-D	99		100		30-150	1		25	A
2,4,5-TP (Silvex)	43		43		30-150	0		25	А

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
DCAA DCAA	48 45		48 45		30-150 30-150	A B

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255

 Lab Number:
 L2351522

 Report Date:
 09/20/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recove	ry Qual	Limits	RPD	Qual	Limits	Column
TCLP Pesticides by EPA 1311 - Westborough	Lab Associate	d sample(s):	01 Batch:	WG1826208-2	WG1826208-3				
Lindane	86		81		30-150	6		20	А
Heptachlor	80		77		30-150	4		20	А
Heptachlor epoxide	78		74		30-150	5		20	А
Endrin	78		74		30-150	5		20	А
Methoxychlor	81		76		30-150	6		20	А

	LCS	LCSD	Acceptance		
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria Column		
2,4,5,6-Tetrachloro-m-xylene	76	74	30-150 A		
Decachlorobiphenyl	82	83	30-150 A		
2,4,5,6-Tetrachloro-m-xylene	76	74	30-150 B		
Decachlorobiphenyl	84	84	30-150 B		

METALS

Serial_No:09202314:59

L2351522

09/20/23

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255

SAMPLE RESULTS

Lab ID: L2351522-01 Client ID: 20220255-FH-X-27E Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Soil 11.4 ~

Report Date:

Lab Number:

Date Collected: 09/06/23 12:00 Date Received: 09/06/23 Field Prep: Not Specified

TCLP/SPLP Ext. Date: 09/07/23 18:56

Percent Solids:	98%						Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
TCLP Metals by Ef	PA 1311 -	Mansfield I	Lab								
Arsenic, TCLP	ND		mg/l	1.00	0.0190	1	09/09/23 07:54	4 09/11/23 15:55	EPA 3015	1,6010D	DHL
Barium, TCLP	0.435	J	mg/l	0.500	0.0210	1	09/09/23 07:54	4 09/11/23 15:55	EPA 3015	1,6010D	DHL
Cadmium, TCLP	ND		mg/l	0.100	0.0100	1	09/09/23 07:54	4 09/11/23 15:55	EPA 3015	1,6010D	DHL
Chromium, TCLP	ND		mg/l	0.200	0.0210	1	09/09/23 07:54	4 09/11/23 15:55	EPA 3015	1,6010D	DHL
Lead, TCLP	ND		mg/l	0.500	0.0270	1	09/09/23 07:54	4 09/11/23 15:55	EPA 3015	1,6010D	DHL
Mercury, TCLP	ND		mg/l	0.0010	0.0005	1	09/13/23 06:40	6 09/19/23 10:40	EPA 7470A	1,7470A	GMG
Selenium, TCLP	ND		mg/l	0.500	0.0350	1	09/09/23 07:54	4 09/11/23 15:55	EPA 3015	1,6010D	DHL
Silver, TCLP	ND		mg/l	0.100	0.0280	1	09/09/23 07:54	4 09/11/23 15:55	EPA 3015	1,6010D	DHL

Project Name:KENSINGTON, NYS RT. 33.Project Number:20220255

 Lab Number:
 L2351522

 Report Date:
 09/20/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
TCLP Metals by EPA	1311 - Mansfield Lab	for sample	e(s): 01	Batch:	WG18253	32-1			
Arsenic, TCLP	ND	mg/l	1.00	0.0190	1	09/09/23 07:54	09/11/23 15:46	1,6010D	DHL
Barium, TCLP	ND	mg/l	0.500	0.0210	1	09/09/23 07:54	09/11/23 15:46	1,6010D	DHL
Cadmium, TCLP	ND	mg/l	0.100	0.0100	1	09/09/23 07:54	09/11/23 15:46	1,6010D	DHL
Chromium, TCLP	ND	mg/l	0.200	0.0210	1	09/09/23 07:54	09/11/23 15:46	1,6010D	DHL
Lead, TCLP	ND	mg/l	0.500	0.0270	1	09/09/23 07:54	09/11/23 15:46	1,6010D	DHL
Selenium, TCLP	ND	mg/l	0.500	0.0350	1	09/09/23 07:54	09/11/23 15:46	1,6010D	DHL
Silver, TCLP	ND	mg/l	0.100	0.0280	1	09/09/23 07:54	09/11/23 15:46	1,6010D	DHL

Prep Information

Digestion Method: EPA 3015

TCLP/SPLP Extraction Date: 09/06/23 23:02

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
TCLP Metals by EPA	1311 - Mansfield Lab	for sample	e(s): 01	Batch:	WG18265	81-1			
Mercury, TCLP	ND	mg/l	0.0010	0.0005	1	09/13/23 06:46	09/19/23 10:33	3 1,7470A	GMG

Prep Information

Digestion Method: EPA 7470A TCLP/SPLP Extraction Date: 09/06/23 23:02

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255 Lab Number: L2351522 Report Date: 09/20/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
TCLP Metals by EPA 1311 - Mansfield Lab Asse	ociated sample(s	s): 01 Ba	atch: WG1825332-2					
Arsenic, TCLP	99		-		75-125	-		20
Barium, TCLP	108		-		75-125	-		20
Cadmium, TCLP	100		-		75-125	-		20
Chromium, TCLP	105		-		75-125	-		20
Lead, TCLP	101		-		75-125	-		20
Selenium, TCLP	102		-		75-125	-		20
Silver, TCLP	102		-		75-125	-		20
TCLP Metals by EPA 1311 - Mansfield Lab Asso	ociated sample(s	s): 01 Ba	atch: WG1826581-2					
Mercury, TCLP	93		-		80-120	-		

Matrix Spike Analysis

B • • • •		Batch Quality Control		
Project Name:	KENSINGTON, NYS RT. 33.		Lab Number:	L2351522
Draiget Number	00000055		Depart Data	00/00/00

Project Number: 20220255

09/20/23 Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recover Limits		RPD Qual Limits
TCLP Metals by EPA 1311 27E	- Mansfield Lab	Associated	sample(s): 0	1 QC Batch	ID: WG	1825332-3	QC Sample:	L2351	522-01	Client ID:	20220255-FH-X-
Arsenic, TCLP	ND	1.2	1.24	103		-	-		75-125	-	20
Barium, TCLP	0.435J	20	21.9	110		-	-		75-125	-	20
Cadmium, TCLP	ND	0.53	0.533	100		-	-		75-125	-	20
Chromium, TCLP	ND	2	2.06	103		-	-		75-125	-	20
Lead, TCLP	ND	5.3	5.32	100		-	-		75-125	-	20
Selenium, TCLP	ND	1.2	1.28	107		-	-		75-125	-	20
Silver, TCLP	ND	0.5	0.517	103		-	-		75-125	-	20
TCLP Metals by EPA 1311 27E	- Mansfield Lab	Associated	sample(s): 0	1 QC Batch	ID: WG	1826581-3	QC Sample:	L2351	522-01	Client ID:	20220255-FH-X-
Mercury, TCLP	ND	0.025	0.0235	94		-	-		75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT. 33. Lab Number:

L2351522 Report Date: 09/20/23

Project Number: 20220255

Parameter	Native Samp	le Duplicate Sample	Units	RPD	Qual	RPD Limits
TCLP Metals by EPA 1311 - Mansfield Lat 27E	o Associated sample(s): 01	QC Batch ID: WG1825332-4	QC Sample:	L2351522-01	Client ID:	20220255-FH-X-
Arsenic, TCLP	ND	ND	mg/l	NC		20
Barium, TCLP	0.435J	0.435J	mg/l	NC		20
Cadmium, TCLP	ND	ND	mg/l	NC		20
Chromium, TCLP	ND	ND	mg/l	NC		20
Lead, TCLP	ND	ND	mg/l	NC		20
Selenium, TCLP	ND	ND	mg/l	NC		20
Silver, TCLP	ND	ND	mg/l	NC		20
CLP Metals by EPA 1311 - Mansfield Lab 27E	o Associated sample(s): 01	QC Batch ID: WG1826581-4	QC Sample:	L2351522-01	Client ID:	20220255-FH-X-
Mercury, TCLP	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_	No:09202314:59
---------	----------------

 Project Name:
 KENSINGTON, NYS RT. 33.
 Lab Number:
 L2351522

 Project Number:
 20220255
 Report Date:
 09/20/23

SAMPLE RESULTS

Lab ID:	L2351522-01	Date Collected:	09/06/23 12:00
Client ID:	20220255-FH-X-27E	Date Received:	09/06/23
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

Sample Depth: Matrix:

Soil

Test Material Information

Source of Material:	Unknown
Description of Material:	Non-Metallic - Damp Soil
Particle Size:	Medium
Preliminary Burning Time (sec):	120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solic	ds - Westborough Lab			
Ignitability	NI	09/11/23 19:11	1,1030	GEF

Serial No:09202314:59

Project Name:	KENSINGTON, NYS RT. 33.	Lab Number:	L2351522			
Project Number:	20220255	Report Date:	09/20/23			
SAMPLE RESULTS						
Lab ID:	L2351522-01	Date Collected:	09/06/23 12:00			
Client ID:	20220255-FH-X-27E	Date Received:	09/06/23			
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified			

Sample Depth: Matrix:

Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough La	ıb								
Solids, Total	97.8		%	0.100	NA	1	-	09/08/23 09:29	121,2540G	ROI
pH (H)	9.96		SU	-	NA	1	-	09/11/23 19:10	1,9045D	AAS
Cyanide, Reactive	ND		mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:12	125,7.3	QJM
Sulfide, Reactive	ND		mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:26	125,7.3	QJM

Project Name:KENSINGTON, NYS RT. 33.Project Number:20220255

 Lab Number:
 L2351522

 Report Date:
 09/20/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sa	ample(s): 01	Batch	WG18	327663-1				
Sulfide, Reactive	ND	mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:25	125,7.3	QJM
General Chemistry -	Westborough Lab for sa	ample(s): 01	Batch:	WG18	327664-1				
Cyanide, Reactive	ND	mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:11	125,7.3	QJM

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255

 Lab Number:
 L2351522

 Report Date:
 09/20/23

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1826190-1					
рН	100	-		99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1827663-2					
Sulfide, Reactive	88	-		60-125	-		40
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1827664-2					
Cyanide, Reactive	70	-		30-125	-		40

Lab Duplicate Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT. 33. 20220255

Project Number:

Lab Number: L2351522 Report Date: 09/20/23

Parameter	Native	e Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough	ab Associated sample(s): 0	1 QC Batch ID:	WG1825064-1	QC Sample: L	2351451-08	Client ID:	DUP Sample
Solids, Total	2	24.9	24.6	%	1		20
General Chemistry - Westborough	ab Associated sample(s): 0	1 QC Batch ID:	WG1826190-2	QC Sample: L	2351421-01	Client ID:	DUP Sample
рН	6	6.93	7.01	SU	1		5
General Chemistry - Westborough	ab Associated sample(s): 0	1 QC Batch ID:	WG1827663-3	QC Sample: L	2353315-01	Client ID:	DUP Sample
Sulfide, Reactive		ND	ND	mg/kg	NC		40
General Chemistry - Westborough	ab Associated sample(s): 0	1 QC Batch ID:	WG1827664-3	QC Sample: L	2353315-01	Client ID:	DUP Sample
Cyanide, Reactive		ND	ND	mg/kg	NC		40

ALPHA

Project Name: KENSINGTON, NYS RT. 33. Project Number: 20220255

Serial_No:09202314:59 *Lab Number:* L2351522 *Report Date:* 09/20/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler		pН		Pres	Seal	Date/Time	Analysis(*)
L2351522-01A	Plastic 2oz unpreserved for TS	А	NA		2.3	Y	Absent		TS(7)
L2351522-01B	Vial Large Septa unpreserved (4oz)	А	NA		2.3	Y	Absent		TCLP-EXT-ZHE(14)
L2351522-01C	Glass 500ml/16oz unpreserved	А	NA		2.3	Y	Absent		IGNIT-1030(14),REACTS(14),PH- 9045(1),REACTCN(14)
L2351522-01W	Amber 1000ml unpreserved Extracts	A	NA		2.3	Y	Absent		TCLP-8270(14),HERB-TCLP*(14),PEST- TCLP*(14)
L2351522-01X	Plastic 120ml HNO3 preserved Extracts	A	NA		2.3	Y	Absent		CD-CI(180),AS-CI(180),BA-CI(180),HG- C(28),PB-CI(180),SE-CI(180),CR-CI(180),AG- CI(180)
L2351522-01X9	Tumble Vessel	А	NA		2.3	Y	Absent		-
L2351522-01Y	Vial unpreserved Extracts	А	NA		2.3	Y	Absent		TCLP-VOA(14)
L2351522-01Z	Vial unpreserved Extracts	А	NA		2.3	Y	Absent		TCLP-VOA(14)

Serial_No:09202314:59

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255

Lab Number: L2351522

Report Date: 09/20/23

GLOSSARY

Acronyms

-	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255

Lab Number: L2351522 Report Date: 09/20/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

¹

Project Name: KENSINGTON, NYS RT. 33.

Project Number: 20220255

Lab Number: L2351522

Report Date: 09/20/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

 Lab Number:
 L2351522

 Report Date:
 09/20/23

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 125 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates IIIA, April 1998.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:09202314:59

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			CHAIN OF CUSTODY Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105					9/	7/2	73	ALPHA JOD # 6351522					
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	and the state	a state of the		A REAL	Deliverables				(a) 15	Billing Information						
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Kens	ingten,	NYS RE	. 33		ASP-A ASP-B					3	Same as Client Info					
FAX: 508-898-9193 Client Information	FAX: 508-822-3288	Project Location: But	oject Location: Buffalo, NY oject # 2022.0255								6 (4 File)	PO# Per Quote Bitledide # 434891						
Client: Worths A2	F	(Use Project name as P					-	Other	Requirem	ent	12.00	Contraction of the	Disposal Site Information					
Address: 95 Perr	1 St. Suite300	Project Manager: A,	Project Manager: A, Klimek						3S landards		t 375	Please identify below location of applicable disposal facilities.						
	NY 14203	ALPHAQuote #:	-	Statement and	State of State	And Person in succession.			tricted Use	님	NY CP-	51	Disposal Facility:					
Phone: 716 - 20		Turn-Around Time		and the second second	And a state	Contrast of the Rest		1 CONFORM		-	Outer		- 51					
Fax: 716-20		Standard		Due Date					estricted U									
Email: aklimek			<u>ا ا</u>	# of Days	S;			-	wer Disch	arge	_		Other:					
These samples have b							ANA	LYSIS	-	-			Sample Filtration					
Other project specific Please specify Metals		ionid.					TCLP	1,0					Done Lab to do Preservation Lab to do					
ALPHA Lab ID	ALPHA Lab ID Collection Sample Sample					Sampler's	- 3	4					(Please Specify below)					
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	3	(-)					Sample Specific Comments					
51522-01	20220255-	DN - X - 27	9/6/23	12:00	Smil	nsite	×	X		-								
									-									
Preservative Code: Container Code Westboro: Certification No: MA933 A = None P = Plastic Westboro: Certification No: MA933 B = HCl A = Amber Glass Mansfield: Certification No: MA013 C = HNO3 V = Vial V = Vial				Container I		Container Type		A P/A									Please print clearly, legibly and completely. Samples can not be logged in and	
D = H2SO4 G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO4 O = Other			By:	Date/Time				A ved By:		Date/Time			turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT					
H = Na-S-O2 E = Encore Methic 5.16 Cal 9/0				<u>9/4202</u> 1/6/23	1350 Mala			TL ISTC			1/23 (HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)					
Form No: 01-25 HC (rev. 30	-Sept-2013)																	

ANALYTICAL REPORT

Lab Number:	L2351914
Client:	Watts Architecture & Engineering P.C
	95 Perry Street
	Suite 300
	Buffalo, NY 14203
ATTN:	Andrew Klimek
Phone:	(716) 206-5100
Project Name:	NYSDOT KENSINGTON EXPRESSWAY
Project Number:	20220255
Report Date:	09/21/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial	No:09212315:31
--------	----------------

Project Name:NYSDOT KENSINGTON EXPRESSWAYProject Number:20220255

 Lab Number:
 L2351914

 Report Date:
 09/21/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2351914-01	20220255-FH-X-23E	SOIL	Not Specified	09/07/23 12:00	09/07/23

Project Name: NYSDOT KENSINGTON EXPRESSWAY Project Number: 20220255

 Lab Number:
 L2351914

 Report Date:
 09/21/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: NYSDOT KENSINGTON EXPRESSWAY Project Number: 20220255

Lab Number: L2351914 **Report Date:** 09/21/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2351914-01: The project name, project number, and client ID were specified by the client.

TCLP Semivolatiles

The WG1826191-3 LCSD recovery, associated with L2351914-01, is below the acceptance criteria for pyridine (8%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Leley Mell Kelly O'Neill

Title: Technical Director/Representative

Date: 09/21/23

ORGANICS

VOLATILES

		Serial_N	0:09212315:31
Project Name:	NYSDOT KENSINGTON EXPRESSWAY	Lab Number:	L2351914
Project Number:	20220255	Report Date:	09/21/23
	SAMPLE RESULTS		
Lab ID:	L2351914-01	Date Collected:	09/07/23 12:00
Client ID:	20220255-FH-X-23E	Date Received:	09/07/23
Sample Location:	Not Specified	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	09/20/23 12:54		
Analyst:	MCM		
Percent Solids:	96%		
TCLP/SPLP Ext. Da	ate: 09/19/23 06:48		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
TCLP Volatiles by EPA 1311 - Westb	orough Lab					
Chloroform	ND		ug/I	7.5	2.2	10
Carbon tetrachloride	ND		ug/l ug/l	5.0	1.3	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	5.0	1.8	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
Benzene	ND		ug/l	5.0	1.6	10
Vinyl chloride	ND		ug/l	10	0.71	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,4-Dichlorobenzene	ND		ug/l	25	1.9	10
2-Butanone	ND		ug/l	50	19.	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	93		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	100		70-130	
dibromofluoromethane	98		70-130	

L2351914

09/21/23

Lab Number:

Report Date:

Project Name: NYSDOT KENSINGTON EXPRESSWAY

Project Number: 20220255

Method Blank Analysis Batch Quality Control

1,8260D
09/20/23 04:53
MCM
09/19/23 06:48

Extraction Date: 09/19/23 06:48

arameter	Result	Qualifier Units	RL	MDL	
CLP Volatiles by EPA 1311 - We	stborough Lab	for sample(s):	01 Batch:	WG1829690-5	
Chloroform	ND	ug/l	7.5	2.2	
Carbon tetrachloride	ND	ug/l	5.0	1.3	
Tetrachloroethene	ND	ug/l	5.0	1.8	
Chlorobenzene	ND	ug/l	5.0	1.8	
1,2-Dichloroethane	ND	ug/l	5.0	1.3	
Benzene	ND	ug/l	5.0	1.6	
Vinyl chloride	ND	ug/l	10	0.71	
1,1-Dichloroethene	ND	ug/l	5.0	1.7	
Trichloroethene	ND	ug/l	5.0	1.8	
1,4-Dichlorobenzene	ND	ug/l	25	1.9	
2-Butanone	ND	ug/l	50	19.	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	86		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	105		70-130	
dibromofluoromethane	93		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: NYSDOT KENSINGTON EXPRESSWAY

Project Number: 20220255

 Lab Number:
 L2351914

 Report Date:
 09/21/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
TCLP Volatiles by EPA 1311 - Westborough I	Lab Associated	l sample(s):	01 Batch: WG	61829690-3	WG1829690-4			
Chloroform	93		89		70-130	4	20	
Carbon tetrachloride	87		86		63-132	1	20	
Tetrachloroethene	100		100		70-130	0	20	
Chlorobenzene	100		100		75-130	0	25	
1,2-Dichloroethane	84		84		70-130	0	20	
Benzene	98		97		70-130	1	25	
Vinyl chloride	47	Q	46	Q	55-140	2	20	
1,1-Dichloroethene	90		92		61-145	2	25	
Trichloroethene	89		89		70-130	0	25	
1,4-Dichlorobenzene	100		100		70-130	0	20	
2-Butanone	98		110		63-138	12	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	75	76	70-130
Toluene-d8	99	97	70-130
4-Bromofluorobenzene	105	102	70-130
dibromofluoromethane	90	87	70-130

SEMIVOLATILES

		Serial_Nc	0:09212315:31
Project Name:	NYSDOT KENSINGTON EXPRESSWAY	Lab Number:	L2351914
Project Number:	20220255	Report Date:	09/21/23
	SAMPLE RESULTS		
Lab ID:	L2351914-01	Date Collected:	09/07/23 12:00
Client ID:	20220255-FH-X-23E	Date Received:	09/07/23
Sample Location:	Not Specified	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	J: EPA 3510C
Analytical Method:	1,8270E	Extraction Date:	09/11/23 18:50
Analytical Date:	09/12/23 10:48		
Analyst:	SZ		
Percent Solids:	96%		
TCLP/SPLP Ext. Da	ate: 09/09/23 12:10		
Analyst: Percent Solids:	SZ 96%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
TCLP Semivolatiles by EPA 1311 - Westh	orough Lab					
Hexachlorobenzene	ND		ug/l	10	3.4	1
2,4-Dinitrotoluene	ND		ug/l	25	1.9	1
Hexachlorobutadiene	ND		ug/l	10	3.0	1
Hexachloroethane	ND		ug/l	10	2.2	1
Nitrobenzene	ND		ug/l	10	3.3	1
2,4,6-Trichlorophenol	ND		ug/l	25	2.5	1
Pentachlorophenol	ND		ug/l	50	9.8	1
2-Methylphenol	ND		ug/l	25	5.5	1
3-Methylphenol/4-Methylphenol	ND		ug/l	25	2.8	1
2,4,5-Trichlorophenol	ND		ug/l	25	1.9	1
Pyridine	ND		ug/l	18	4.5	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	59	21-120	
Phenol-d6	52	10-120	
Nitrobenzene-d5	63	23-120	
2-Fluorobiphenyl	57	15-120	
2,4,6-Tribromophenol	80	10-120	
4-Terphenyl-d14	57	33-120	

Lab Number:

Report Date:

Project Name: NYSDOT KENSINGTON EXPRESSWAY

Project Number: 20220255

Method Blank Analysis Batch Quality Control

Analytical Method:1,8270EAnalytical Date:09/12/23 08:03Analyst:IMTCLP/SPLP Extraction Date:09/09/23 12:10

Extraction Method:EPA 3510CExtraction Date:09/11/23 18:50

L2351914

09/21/23

rameter	Result	Qualifier Units	RL	MDL
CLP Semivolatiles by EPA 1311	- Westborough	h Lab for sample(s):	01 Batch	: WG1826191-1
Hexachlorobenzene	ND	ug/l	10	3.4
2,4-Dinitrotoluene	ND	ug/l	25	1.9
Hexachlorobutadiene	ND	ug/l	10	3.0
Hexachloroethane	ND	ug/l	10	2.2
Nitrobenzene	ND	ug/l	10	3.3
2,4,6-Trichlorophenol	ND	ug/l	25	2.5
Pentachlorophenol	ND	ug/l	50	9.8
2-Methylphenol	ND	ug/l	25	5.5
3-Methylphenol/4-Methylphenol	ND	ug/l	25	2.8
2,4,5-Trichlorophenol	ND	ug/l	25	1.9
Pyridine	ND	ug/l	18	4.5

	Acceptance
%Recovery	Qualifier Criteria
58	21-120
52	10-120
63	23-120
59	15-120
79	10-120
57	33-120
	52 63 59 79

Lab Control Sample Analysis Batch Quality Control

Project Name: NYSDOT KENSINGTON EXPRESSWAY

Project Number: 20220255

 Lab Number:
 L2351914

 Report Date:
 09/21/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
TCLP Semivolatiles by EPA 1311 - Westbord	ough Lab Assoc	iated sample(s)	: 01 Batch:	WG1826191-	2 WG1826191-3	3		
Hexachlorobenzene	62		57		40-140	8		30
2,4-Dinitrotoluene	61		58		40-132	5		30
Hexachlorobutadiene	53		54		28-111	2		30
Hexachloroethane	49		50		21-105	2		30
Nitrobenzene	55		54		40-140	2		30
2,4,6-Trichlorophenol	66		62		30-130	6		30
Pentachlorophenol	69		65		9-103	6		30
2-Methylphenol	53		52		30-130	2		30
3-Methylphenol/4-Methylphenol	57		54		30-130	5		30
2,4,5-Trichlorophenol	64		60		30-130	6		30
Pyridine	13		8	Q	10-66	46	Q	30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
	•		
2-Fluorophenol	54	53	21-120
Phenol-d6	50	49	10-120
Nitrobenzene-d5	58	57	23-120
2-Fluorobiphenyl	53	53	15-120
2,4,6-Tribromophenol	76	72	10-120
4-Terphenyl-d14	53	50	33-120

PESTICIDES

		Serial_No:092123	315:31
Project Name:	NYSDOT KENSINGTON EXPRESSWAY	Lab Number: L23	51914
Project Number:	20220255	Report Date: 09/2	21/23
	SAMPLE RESULTS		
Lab ID:	L2351914-01	Date Collected: 09/07/	/23 12:00
Client ID:	20220255-FH-X-23E	Date Received: 09/07/	'23
Sample Location:	Not Specified	Field Prep: Not Sp	pecified
Sample Depth:			
Matrix:	Soil	Extraction Method: EPA 3	510C
Analytical Method:	1,8081B	Extraction Date: 09/11/	/23 19:01
Analytical Date:	09/12/23 08:54		
Analyst:	AKM		
Percent Solids:	96%		
TCLP/SPLP Ext. Da	ate: 09/09/23 12:10		

Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
orough Lab						
ND		ug/l	0.100	0.022	1	A
ND		ug/l	0.100	0.016	1	А
ND		ug/l	0.100	0.021	1	А
ND		ug/l	0.200	0.021	1	А
ND		ug/l	1.00	0.034	1	А
ND		ug/l	1.00	0.314	1	А
ND		ug/l	1.00	0.232	1	А
	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ug/l ND ug/l	ND ug/l 0.100 ND ug/l 0.100 ND ug/l 0.100 ND ug/l 0.100 ND ug/l 0.200 ND ug/l 1.00 ND ug/l 1.00	ND ug/l 0.100 0.022 ND ug/l 0.100 0.016 ND ug/l 0.100 0.021 ND ug/l 0.100 0.021 ND ug/l 0.200 0.021 ND ug/l 0.200 0.021 ND ug/l 1.00 0.034 ND ug/l 1.00 0.314	ND ug/l 0.100 0.022 1 ND ug/l 0.100 0.016 1 ND ug/l 0.100 0.021 1 ND ug/l 0.100 0.021 1 ND ug/l 0.200 0.021 1 ND ug/l 1.00 0.034 1 ND ug/l 1.00 0.314 1

Surrogate	% Becovery	Qualifier	Acceptance	Calumn
	% Recovery	Quaimer	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	73		30-150	А
Decachlorobiphenyl	64		30-150	А
2,4,5,6-Tetrachloro-m-xylene	73		30-150	В
Decachlorobiphenyl	68		30-150	В

		Serial_No	:09212315:31
Project Name:	NYSDOT KENSINGTON EXPRESSWAY	Lab Number:	L2351914
Project Number:	20220255	Report Date:	09/21/23
	SAMPLE RESULTS		
Lab ID:	L2351914-01	Date Collected:	09/07/23 12:00
Client ID:	20220255-FH-X-23E	Date Received:	09/07/23
Sample Location:	Not Specified	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	: EPA 8151A
Analytical Method:	1,8151A	Extraction Date:	09/10/23 15:33
Analytical Date:	09/11/23 15:57		
Analyst:	MMG		
Percent Solids:	96%		
TCLP/SPLP Ext. Da	ate: 09/09/23 12:10		
Methylation Date:	09/11/23 06:30		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
TCLP Herbicides by EPA 1311	I - Westborough Lab						
2,4-D	ND		mg/l	0.025	0.001	1	A
2,4,5-TP (Silvex)	ND		mg/l	0.005	0.001	1	А
Surrogate			% Recovery	Qualifier		eptance iteria Co	lumn
DCAA			43		3	30-150	A

46

30-150

В

DCAA

Project Name:	NYSDOT KENSINGTON EXPRESSWAY
Project Number:	20220255

Lab Number: L2351914 Report Date: 09/21/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8151A	Extraction Method:	EPA 8151A
Analytical Date:	09/11/23 14:24	Extraction Date:	09/10/23 15:33
Analyst:	MMG		
TCLP/SPLP Extraction Date:	09/09/23 12:10		
Methylation Date:	09/11/23 06:30		

Parameter	Result	Qualifier	Units		RL	MDL	Column
TCLP Herbicides by EPA 137	11 - Westborough	Lab for sam	nple(s):	01	Batch:	WG1825743-1	
2,4-D	ND		mg/l		0.025	0.001	А
2,4,5-TP (Silvex)	ND		mg/l		0.005	0.001	А

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column		
DCAA	35		30-150	А		
DCAA	33		30-150	В		

Lab Number:

Report Date:

Project Name: NYSDOT KENSINGTON EXPRESSWAY

Project Number: 20220255

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8081B	Extrac
Analytical Date:	09/12/23 08:06	Extrac
Analyst:	AKM	
TCLP/SPLP Extraction Date:	09/09/23 12:10	

Extraction Method: EPA 3510C Extraction Date: 09/11/23 19:01

L2351914

09/21/23

Parameter	Result	Qualifier Units	RL	MDL	Column
CLP Pesticides by EPA 13	311 - Westborough L	_ab for sample(s):	01 Batch	: WG1826197-1	
Lindane	ND	ug/l	0.100	0.022	А
Heptachlor	ND	ug/l	0.100	0.016	А
Heptachlor epoxide	ND	ug/l	0.100	0.021	А
Endrin	ND	ug/l	0.200	0.021	А
Methoxychlor	ND	ug/l	1.00	0.034	А
Toxaphene	ND	ug/l	1.00	0.314	А
Chlordane	ND	ug/l	1.00	0.232	А

			Acceptanc	e
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		30-150	A
Decachlorobiphenyl	93		30-150	А
2,4,5,6-Tetrachloro-m-xylene	77		30-150	В
Decachlorobiphenyl	102		30-150	В
Decachiorobiphenyi	102		30-150	в

Lab Control Sample Analysis

Project Name:	NYSDOT KENSINGTON EXPRESSWAY	Batch Quality Control	Lab Number:	L2351914
Project Number:	20220255		Report Date:	09/21/23

	LCS			LCSD		%Recovery				
Parameter	%Recovery	Qual	%R	ecovery	Qual	Limits	RPD	Qual	Limits	Column
TCLP Herbicides by EPA 1311 - Westbord	ough Lab Associat	ed sample(s):	01	Batch:	WG1825743-2	WG1825743-3				
2,4-D	78			74		30-150	5		25	А
2,4,5-TP (Silvex)	30			33		30-150	10		25	А

Surrogate	LCS	LCSD	Acceptance
	%Recovery C	Qual %Recovery Qual	Criteria Column
DCAA	38	42	30-150 A
DCAA	39	38	30-150 B

Lab Control Sample Analysis Batch Quality Control

Project Name:	NYSDOT KENSINGTON EXPRESSWAY
r rojeot nume.	

Project Number: 20220255

 Lab Number:
 L2351914

 Report Date:
 09/21/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	/ Qual	Limits	RPD	Qual	Limits	Column
TCLP Pesticides by EPA 1311 - Westborough	h Lab Associate	d sample(s):	01 Batch:	WG1826197-2	WG1826197-3				
Lindane	76		90		30-150	0		20	А
Heptachlor	70		82		30-150	0		20	А
Heptachlor epoxide	70		81		30-150	0		20	А
Endrin	69		80		30-150	0		20	А
Methoxychlor	70		83		30-150	0		20	А

	LCS	LCSD	Acceptance	Acceptance		
Surrogate	%Recovery Q	ual %Recovery Q	ual Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	66	79	30-150	А		
Decachlorobiphenyl	73	92	30-150	А		
2,4,5,6-Tetrachloro-m-xylene	68	79	30-150	В		
Decachlorobiphenyl	81	99	30-150	В		

METALS

Serial_No:09212315:31

Project Name:	NYSDOT KENSINGTON EXPRESSWAY	Lab Number:	L2351914
Project Number:	20220255	Report Date:	09/21/23
	SAMPLE RESULTS		
Lab ID:	L2351914-01	Date Collected:	09/07/23 12:00
Client ID:	20220255-FH-X-23E	Date Received:	09/07/23
Sample Location:	Not Specified	Field Prep:	Not Specified
Sample Depth:		TCLP/SPLP Ext. Date	e: 09/09/23 12:10

Soil										
96%					Dilution	Date	Date	Prep	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
PA 1311 -	Mansfield L	_ab								
0.0346	J	mg/l	1.00	0.0190	1	09/12/23 01:0	5 09/12/23 08:35	EPA 3015	1,6010D	DMB
0.753		mg/l	0.500	0.0210	1	09/12/23 01:0	5 09/12/23 08:35	EPA 3015	1,6010D	DMB
ND		mg/l	0.100	0.0100	1	09/12/23 01:0	5 09/12/23 08:35	EPA 3015	1,6010D	DMB
ND		mg/l	0.200	0.0210	1	09/12/23 01:0	5 09/12/23 08:35	EPA 3015	1,6010D	DMB
ND		mg/l	0.500	0.0270	1	09/12/23 01:0	5 09/12/23 08:35	EPA 3015	1,6010D	DMB
ND		mg/l	0.0010	0.0005	1	09/11/23 23:20	6 09/12/23 13:06	EPA 7470A	1,7470A	GMG
ND		mg/l	0.500	0.0350	1	09/12/23 01:0	5 09/12/23 08:35	EPA 3015	1,6010D	DMB
ND		mg/l	0.100	0.0280	1	09/12/23 01:0	5 09/12/23 08:35	EPA 3015	1,6010D	DMB
	96% Result PA 1311 - 0.0346 0.753 ND ND ND ND ND ND ND	96% Result Qualifier A 1311 - Mansfield I 0.0346 J 0.753 ND ND ND ND ND ND ND ND ND	96% Result Qualifier Units PA 1311 - Mansfield Lab 0.0346 J mg/l 0.753 mg/l ND mg/l	96% Result Qualifier Units RL PA 1311 - Mansfield Lab	96% Result Qualifier Units RL MDL PA 1311 - Mansfield Lab	96% Result Qualifier Units RL MDL Dilution Factor PA 1311 - Mansfield Lab	96% Dilution Date Prepared Result Qualifier Units RL MDL Factor Date Prepared 0.0346 J mg/l 1.00 0.0190 1 09/12/23 01:08 0.753 mg/l 0.500 0.0210 1 09/12/23 01:08 ND mg/l 0.100 0.0100 1 09/12/23 01:08 ND mg/l 0.200 0.0210 1 09/12/23 01:08 ND mg/l 0.200 0.0210 1 09/12/23 01:08 ND mg/l 0.200 0.0210 1 09/12/23 01:08 ND mg/l 0.500 0.0270 1 09/12/23 01:08 ND mg/l 0.0010 0.0055 1 09/11/23 23:28 ND mg/l 0.500 0.0350 1 09/12/23 01:08	96% Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Date Analyzed PA 1311 - Mansfield Lab	96% Date Date Prep Result Qualifier Units RL MDL Prepresed Prepresed Prep PA 1311 - Wansfield Lab mg/l 1.00 0.0190 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 0.0346 J mg/l 0.500 0.0210 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 0.753 mg/l 0.100 0.0100 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 ND mg/l 0.200 0.0210 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 ND mg/l 0.200 0.0210 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 ND mg/l 0.200 0.0210 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 ND mg/l 0.500 0.0270 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 ND mg/l 0.0010 0.0005 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 ND mg/l	96% Result Qualifier Units RL MDL Date MDL Date Prepared Date Analyzed Prep Method Prep Method Analytical Method PA 1311 - Varsfield Labor J mg/l 1.00 0.0190 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 1,6010D 0.0346 J mg/l 0.500 0.0210 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 1,6010D 0.753 mg/l 0.100 0.0100 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 1,6010D ND mg/l 0.200 0.0210 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 1,6010D ND mg/l 0.200 0.0210 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 1,6010D ND mg/l 0.200 0.0270 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 1,6010D ND mg/l 0.0010 0.0005 1 09/12/23 01:05 09/12/23 08:35 EPA 3015 1,6010D ND mg/l 0.

Project Name: NYSDOT KENSINGTON EXPRESSWAY Project Number: 20220255
 Lab Number:
 L2351914

 Report Date:
 09/21/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
TCLP Metals by EPA 1	311 - Mansfield Lab	for sample	e(s): 01	Batch:	WG18258	72-1			
Arsenic, TCLP	ND	mg/l	1.00	0.0190	1	09/12/23 01:05	09/12/23 08:12	1,6010D	DMB
Barium, TCLP	ND	mg/l	0.500	0.0210	1	09/12/23 01:05	09/12/23 08:12	1,6010D	DMB
Cadmium, TCLP	ND	mg/l	0.100	0.0100	1	09/12/23 01:05	09/12/23 08:12	1,6010D	DMB
Chromium, TCLP	ND	mg/l	0.200	0.0210	1	09/12/23 01:05	09/12/23 08:12	1,6010D	DMB
Lead, TCLP	ND	mg/l	0.500	0.0270	1	09/12/23 01:05	09/12/23 08:12	1,6010D	DMB
Selenium, TCLP	ND	mg/l	0.500	0.0350	1	09/12/23 01:05	09/12/23 08:12	1,6010D	DMB
Silver, TCLP	ND	mg/l	0.100	0.0280	1	09/12/23 01:05	09/12/23 08:12	1,6010D	DMB

Prep Information

Digestion Method: EPA 3015

TCLP/SPLP Extraction Date: 09/09/23 12:10

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
TCLP Metals by EPA	1311 - Mansfield Lab	for sample	e(s): 01	Batch:	WG18258	73-1			
Mercury, TCLP	ND	mg/l	0.0010	0.0005	1	09/11/23 23:26	09/12/23 13:00) 1,7470A	GMG

Prep Information

Digestion Method:	EPA 7470A
TCLP/SPLP Extraction Date:	09/09/23 12:10

Lab Control Sample Analysis Batch Quality Control

Project Name: NYSDOT KENSINGTON EXPRESSWAY

Project Number: 20220255

 Lab Number:
 L2351914

 Report Date:
 09/21/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
TCLP Metals by EPA 1311 - Mansfield Lab Ass	ociated sample(s): 01 Ba	atch: WG1825872-2					
Arsenic, TCLP	91		-		75-125	-		20
Barium, TCLP	82		-		75-125	-		20
Cadmium, TCLP	87		-		75-125	-		20
Chromium, TCLP	94		-		75-125	-		20
Lead, TCLP	89		-		75-125	-		20
Selenium, TCLP	88		-		75-125	-		20
Silver, TCLP	89		-		75-125	-		20
TCLP Metals by EPA 1311 - Mansfield Lab Ass	ociated sample(s): 01 Ba	atch: WG1825873-2					
Mercury, TCLP	101		-		80-120	-		

Matrix Spike Analysis

Project Name:	NYSDOT KENSINGTON EXPRESSWAY	Batch Quality Control	Lab Number:	L2351914
Project Number:	20220255		Report Date:	09/21/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recover Qual Limits		RPD Qual Limits
TCLP Metals by EPA 1311 - 23E	Mansfield Lab	Associated s	sample(s): 01	QC Batch	ID: WG1825872-3	QC Sample:	L2351914-01	Client ID:	20220255-FH-X-
Arsenic, TCLP	0.0346J	1.2	1.13	94	-	-	75-125	-	20
Barium, TCLP	0.753	20	19.4	93	-	-	75-125	-	20
Cadmium, TCLP	ND	0.53	0.465	88	-	-	75-125	-	20
Chromium, TCLP	ND	2	1.92	96	-	-	75-125	-	20
Lead, TCLP	ND	5.3	4.69	88	-	-	75-125	-	20
Selenium, TCLP	ND	1.2	1.04	87	-	-	75-125	-	20
Silver, TCLP	ND	0.5	0.453	91	-	-	75-125	-	20
TCLP Metals by EPA 1311 - 23E	Mansfield Lab	Associated s	sample(s): 01	QC Batch	ID: WG1825873-3	QC Sample:	L2351914-01	Client ID:	20220255-FH-X-
Mercury, TCLP	ND	0.025	0.0242	97	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: NYSDOT KENSINGTON EXPRESSWAY

 Lab Number:
 L2351914

 Report Date:
 09/21/23

Project Number: 20220255

Parameter	Native Samp	le Duplicate Sample	Units	RPD	Qual	RPD Limits
CLP Metals by EPA 1311 - Mansfield Lab 3E	Associated sample(s): 01	QC Batch ID: WG1825872-4	QC Sample: I	_2351914-01	Client ID:	20220255-FH-X-
Arsenic, TCLP	0.0346J	0.0392J	mg/l	NC		20
Barium, TCLP	0.753	0.773	mg/l	3		20
Cadmium, TCLP	ND	ND	mg/l	NC		20
Chromium, TCLP	ND	ND	mg/l	NC		20
Lead, TCLP	ND	ND	mg/l	NC		20
Selenium, TCLP	ND	ND	mg/l	NC		20
Silver, TCLP	ND	ND	mg/l	NC		20
CLP Metals by EPA 1311 - Mansfield Lab 3E	Associated sample(s): 01	QC Batch ID: WG1825873-4	QC Sample: I	_2351914-01	Client ID:	20220255-FH-X-
Mercury, TCLP	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name:	NYSDOT KENSINGTON EXPRESSWA	Lab Number:	L2351914
Project Number:	20220255	Report Date:	09/21/23

SAMPLE RESULTS

Lab ID:	L2351914-01
Client ID:	20220255-FH-X-23E
Sample Location:	Not Specified

Sample Depth: Matrix:

Soil

Date Collected:09/07/23 12:00Date Received:09/07/23Field Prep:Not Specified

Test Material Information

Source of Material:	Unknown
Description of Material:	Non-Metallic - Wet Soil
Particle Size:	Medium
Preliminary Burning Time (sec):	120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	s - Westborough Lab			
Ignitability	NI	09/11/23 19:11	1,1030	GEF

	Serial	No:09212315:31
--	--------	----------------

09/15/23 19:30 09/15/23 20:56

09/15/23 19:30 09/15/23 21:14

QJM

QJM

125,7.3

125,7.3

Project Name:	NYSDOT KENSINGTON EXPRESSWAY	Lab Number:	L2351914
Project Number:	20220255	Report Date:	09/21/23

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2351914-0 20220255-F Not Specifie	H-X-23E						Received:	09/07/23 12:00 09/07/23 Not Specified)
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total	96.4		%	0.100	NA	1	-	09/09/23 10:50) 121,2540G	ROI
pH (H)	9.48		SU	-	NA	1	-	09/08/23 20:12	1 1,9045D	AAS

10.

10.

1

1

10

10

mg/kg

mg/kg

ND

ND

Cyanide, Reactive

Sulfide, Reactive

Project Name:NYSDOT KENSINGTON EXPRESSWAProject Number:20220255

 Lab Number:
 L2351914

 Report Date:
 09/21/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab for s	ample(s): 01	Batch:	WG18	328098-1				
Sulfide, Reactive	ND	mg/kg	10	10.	1	09/15/23 19:30	09/15/23 21:13	125,7.3	QJM
General Chemistry	- Westborough Lab for s	ample(s): 01	Batch:	WG18	328099-1				
Cyanide, Reactive	ND	mg/kg	10	10.	1	09/15/23 19:30	09/15/23 20:55	125,7.3	QJM

Lab Control Sample Analysis

Project Name:	NYSDOT KENSINGTON EXPRESSWAY	Batch Quality Co	ontrol	Lab Number:	L2351914
Project Number:	20220255			Report Date:	09/21/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1825422-1					
рН	100		-		99-101	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1828098-2					
Sulfide, Reactive	74		-		60-125	-		40
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1828099-2					
Cyanide, Reactive	70		-		30-125	-		40

Lab Duplicate Analysis Batch Quality Control

Project Name:NYSDOT KENSINGTON EXPRESSWAYProject Number:20220255

 Lab Number:
 L2351914

 Report Date:
 09/21/23

Parameter	Native	Sample	Duplicate Sam	ple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1825422-2	QC Sample:	L2348757-03	Client ID:	DUP Sample
рН	7.	54	7.68	SU	2		5
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1825530-1	QC Sample:	L2351876-01	Client ID:	DUP Sample
Solids, Total	5′	1.6	47.8	%	8		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1828098-3	QC Sample:	L2353480-07	Client ID:	DUP Sample
Sulfide, Reactive	Ν	ID	ND	mg/kg) NC		40
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1828099-3	QC Sample:	L2353480-07	Client ID:	DUP Sample
Cyanide, Reactive	Ν	ID	ND	mg/k	nc NC		40

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Containar Information

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2351914-01A	Plastic 2oz unpreserved for TS	А	NA		2.4	Y	Absent		TS(7)
L2351914-01B	Vial Large Septa unpreserved (4oz)	А	NA		2.4	Y	Absent		TCLP-EXT-ZHE(14)
L2351914-01C	Glass 500ml/16oz unpreserved	А	NA		2.4	Y	Absent		IGNIT-1030(14),REACTS(14),PH- 9045(1),REACTCN(14)
L2351914-01W	Amber 1000ml unpreserved Extracts	А	NA		2.4	Y	Absent		TCLP-8270(14),PEST-TCLP*(14),HERB- TCLP*(14)
L2351914-01X	Plastic 120ml HNO3 preserved Extracts	A	NA		2.4	Y	Absent		CD-CI(180),AS-CI(180),BA-CI(180),HG- C(28),PB-CI(180),CR-CI(180),SE-CI(180),AG- CI(180)
L2351914-01X9	Tumble Vessel	А	NA		2.4	Y	Absent		-
L2351914-01Y	Vial unpreserved Extracts	A	NA		2.4	Υ	Absent		TCLP-VOA(14)
L2351914-01Z	Vial unpreserved Extracts	А	NA		2.4	Y	Absent		TCLP-VOA(14)

Project Name: NYSDOT KENSINGTON EXPRESSWAY

Project Number: 20220255

Lab Number: L2351914

Report Date: 09/21/23

GLOSSARY

Acronyms

,,,,	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: NYSDOT KENSINGTON EXPRESSWAY

Project Number: 20220255

Lab Number:	L2351914
Report Date:	09/21/23

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: NYSDOT KENSINGTON EXPRESSWAY

Project Number: 20220255

Lab Number: L2351914

Report Date: 09/21/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: NYSDOT KENSINGTON EXPRESSWAY Project Number: 20220255
 Lab Number:
 L2351914

 Report Date:
 09/21/23

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 125 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates IIIA, April 1998.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

-	NEW YORK	Service Centers Mahwah, NJ 07430: 35 Whitne	ev Rd. Suite 5		Pag	e	Date Rec'd 9 8 23 ALPHA Job #					- Andrewski - A		
Διρήλ	CHAIN OF	Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	Way	05	1 0	of		in L	ab	9 8 23			12351914	
Westborough, MA 01581	CUSTODY Mansfield, MA 02048		ooper rere, oune r			and the second second	and the second second		10.0	U		1.00.0283	and the second property of the second second second)
8 Walkup Dr.	320 Forbes Blvd	Project Information					Delr	verables	2		100.0		Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:				_		ASP-/			ASP-B		Same as Client Info	
		Project Location:							6 (1 File)		EQuIS	(4 File)	PO# Per quote	110
Client Information	ø	Project #					X	Other			bettle order #43			
Client: Watts .	A+E	(Use Project name as P	roject#)	Sec. 1			Reg	ulatory I	Requireme	nt		and the second second	Disposal Site Information	
Address: 95 Peri	ry st snite	Project Manager:] NY TO	GS		NY Part	375	Please identify below location of	t
Buffaro, N	1 14203	ALPHAQuote #:	1000			1.11		AWQ S	tandards		NY CP-	51	applicable disposal facilities.	
Phone: 7/6-206		Turn-Around Time	ATT AND	ALL R	910 - C.			NY Res	stricted Use		Other		Disposal Facility:	
Fax: 716-200		Standar	d X b	Due Date	at.		16	NY Unr	estricted Us	e			U NJ 🕅 NY	
Email: aKlimek				# of Days				NYC S	ewer Discha	rge			Other:	
These samples have b	and a second	tid.		ii oi bayo			ANA	LYSIS			_		Sample Filtration	Т
Other project specific									_					- 0
Please specify Metals		incino.					10	T,C					Done Lab to do Preservation Lab to do	a I B
	I I I I I I I I I I I I I I I I I I I						12	2					(Please Specify below)	o t
ALPHA Lab ID	s	ample ID	Colle	ection	Sample	Sampler's	3	N						-
(Lab Use Only)			Date	Time	Matrix	Initials	K	F				_	Sample Specific Comments	e
51914 - 01	20220253	5-DN-X-23	9-7-23	12:00	Soil	NY	X	X						
														Γ
								\square						
								+						T
				-			-	+	-			-		t
					-		-	+	_		-			+
								+	_			-		+
					<u> </u>		-	+	_	+				+
	Container Code P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N			Con	tainer Type	A	F/A					Please print clearly, legibl and completely. Samples	19
HNO3 V = Vial = H ₂ SO ₄ G = Glass = NaOH B = Bacteria Cup				F	reservative	A	A/A					not be logged in and turnaround time clock will start until any ambiguities		
	C = Cube O = Other	Relinquished	By:	Date/	Time	1 2 1	Recei	ved By:			Date/T	ime	resolved. BY EXECUTING	
- 1400 10/04	E = Encore	nun		9-7-231	13:10	londe	m	LOU	(AAL)	9/7	23	13:10	THIS COC, THE CLIENT HAS READ AND AGREE	
- 146262623	D = BOD Bottle	Jacquin Fa	W (AAD)	9/7/23	the second se	X		y	(1	22 0		TO BE BOUND BY ALPH TERMS & CONDITIONS.	A'S
orm No: 01-25 HC (rev. 30	-Sept-2013)												(See reverse side.)	

ANALYTICAL REPORT

Lab Number:	L2352639
Client:	Watts Architecture & Engineering P.C
	95 Perry Street
	Suite 300
	Buffalo, NY 14203
ATTN:	Andrew Klimek
Phone:	(716) 206-5100
Project Name:	KENSINGTON EXPRESSWAY,NYS RT33
Project Number:	20220255
Report Date:	09/20/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:KENSINGTON EXPRESSWAY,NYS RT33Project Number:20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2352639-01	20220255-FH-X-32E	SOIL	BUFFALO, NY 14203	09/11/23 10:35	09/11/23
L2352639-02	20220255-FH-X-34E	SOIL	BUFFALO, NY 14203	09/11/23 11:30	09/11/23

Project Name:KENSINGTON EXPRESSWAY,NYS RT33Project Number:20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: KENSINGTON EXPRESSWAY,NYS RT33 Project Number: 20220255
 Lab Number:
 L2352639

 Report Date:
 09/20/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2352639-01 and -02: The Client ID was specified by the client.

TCLP Semivolatiles

The WG1828125-3 LCSD recovery, associated with L2352639-01 and -02, is below the acceptance criteria for pyridine (8%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 09/20/23

ORGANICS

VOLATILES

		Serial_N	o:09202316:33
Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23
	SAMPLE RESULTS		
Lab ID:	L2352639-01	Date Collected:	09/11/23 10:35
Client ID:	20220255-FH-X-32E	Date Received:	09/11/23
Sample Location:	BUFFALO, NY 14203	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	09/20/23 06:05		
Analyst:	MCM		
Percent Solids:	89%		
TCLP/SPLP Ext. Da	ate: 09/19/23 06:48		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
TCLP Volatiles by EPA 1311 - Westborough Lab									
Chloroform	ND		ug/I	7.5	2.2	10			
Carbon tetrachloride	ND		ug/l ug/l	5.0	1.3	10			
Tetrachloroethene	ND		ug/l	5.0	1.8	10			
Chlorobenzene	ND		ug/l	5.0	1.8	10			
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10			
Benzene	ND		ug/l	5.0	1.6	10			
Vinyl chloride	ND		ug/l	10	0.71	10			
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10			
Trichloroethene	ND		ug/l	5.0	1.8	10			
1,4-Dichlorobenzene	ND		ug/l	25	1.9	10			
2-Butanone	ND		ug/l	50	19.	10			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	103		70-130	
dibromofluoromethane	93		70-130	

		Serial_N	p:09202316:33
Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23
	SAMPLE RESULTS		
Lab ID:	L2352639-02	Date Collected:	09/11/23 11:30
Client ID:	20220255-FH-X-34E	Date Received:	09/11/23
Sample Location:	BUFFALO, NY 14203	Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids: TCLP/SPLP Ext. Da	Soil 1,8260D 09/20/23 06:29 MCM 90% ate: 09/19/23 06:48		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
TCLP Volatiles by EPA 1311 - Westborough Lab									
Chloroform	ND			7.5	2.2	10			
Carbon tetrachloride	ND		ug/l ug/l	5.0	1.3	10			
Tetrachloroethene	ND		ug/l	5.0	1.8	10			
Chlorobenzene	ND		ug/l	5.0	1.8	10			
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10			
Benzene	ND		ug/l	5.0	1.6	10			
Vinyl chloride	ND		ug/l	10	0.71	10			
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10			
Trichloroethene	ND		ug/l	5.0	1.8	10			
1,4-Dichlorobenzene	ND		ug/l	25	1.9	10			
2-Butanone	ND		ug/l	50	19.	10			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	103	70-130	
dibromofluoromethane	90	70-130	

L2352639

09/20/23

Lab Number:

Report Date:

Project Name:	KENSINGTON EXPRESSWAY, NYS RT33
---------------	---------------------------------

Project Number: 20220255

Method Blank Ana

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260D
Analytical Date:	09/20/23 04:53
Analyst:	MCM
TCLP/SPLP Extraction Date:	09/19/23 06:48

Extraction Date: 09/19/23 06:48

arameter	Result	Qualifier Units	RL	MDL
CLP Volatiles by EPA 1311 - We	stborough Lab	for sample(s):	01-02 Batch:	WG1829690-5
Chloroform	ND	ug/l	7.5	2.2
Carbon tetrachloride	ND	ug/l	5.0	1.3
Tetrachloroethene	ND	ug/l	5.0	1.8
Chlorobenzene	ND	ug/l	5.0	1.8
1,2-Dichloroethane	ND	ug/l	5.0	1.3
Benzene	ND	ug/l	5.0	1.6
Vinyl chloride	ND	ug/l	10	0.71
1,1-Dichloroethene	ND	ug/l	5.0	1.7
Trichloroethene	ND	ug/l	5.0	1.8
1,4-Dichlorobenzene	ND	ug/l	25	1.9
2-Butanone	ND	ug/l	50	19.

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	_
1,2-Dichloroethane-d4	86		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	105		70-130	
dibromofluoromethane	93		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON EXPRESSWAY, NYS RT33

Project Number: 20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

Parameter	LCS %Recovery	Qual		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
TCLP Volatiles by EPA 1311 - Westborough I	_ab Associated	l sample(s):	01-02	Batch:	WG1829690-3	WG1829690-4			
Chloroform	93			89		70-130	4		20
Carbon tetrachloride	87			86		63-132	1		20
Tetrachloroethene	100			100		70-130	0		20
Chlorobenzene	100			100		75-130	0		25
1,2-Dichloroethane	84			84		70-130	0		20
Benzene	98			97		70-130	1		25
Vinyl chloride	47	Q		46	Q	55-140	2		20
1,1-Dichloroethene	90			92		61-145	2		25
Trichloroethene	89			89		70-130	0		25
1,4-Dichlorobenzene	100			100		70-130	0		20
2-Butanone	98			110		63-138	12		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	75	76	70-130
Toluene-d8	99	97	70-130
4-Bromofluorobenzene	105	102	70-130
dibromofluoromethane	90	87	70-130

SEMIVOLATILES

		Serial_No	0:09202316:33
Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23
	SAMPLE RESULTS		
Lab ID:	L2352639-01	Date Collected:	09/11/23 10:35
Client ID:	20220255-FH-X-32E	Date Received:	09/11/23
Sample Location:	BUFFALO, NY 14203	Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids: TCLP/SPLP Ext. Da	Soil 1,8270E 09/17/23 20:34 CMM ^{89%} ate: 09/13/23 06:26	Extraction Method Extraction Date:	I: EPA 3510C 09/15/23 20:36

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
TCLP Semivolatiles by EPA 1311 - Westborough Lab							
Hexachlorobenzene	ND		ug/l	10	3.4	1	
2,4-Dinitrotoluene	ND		ug/l	25	1.9	1	
Hexachlorobutadiene	ND		ug/l	10	3.0	1	
Hexachloroethane	ND		ug/l	10	2.2	1	
Nitrobenzene	ND		ug/l	10	3.3	1	
2,4,6-Trichlorophenol	ND		ug/l	25	2.5	1	
Pentachlorophenol	ND		ug/l	50	9.8	1	
2-Methylphenol	ND		ug/l	25	5.5	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	25	2.8	1	
2,4,5-Trichlorophenol	ND		ug/l	25	1.9	1	
Pyridine	ND		ug/l	18	4.5	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	74	21-120	
Phenol-d6	68	10-120	
Nitrobenzene-d5	71	23-120	
2-Fluorobiphenyl	65	15-120	
2,4,6-Tribromophenol	78	10-120	
4-Terphenyl-d14	70	33-120	

		Serial_No	:09202316:33
Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23
	SAMPLE RESULTS		
Lab ID:	L2352639-02	Date Collected:	09/11/23 11:30
Client ID:	20220255-FH-X-34E	Date Received:	09/11/23
Sample Location:	BUFFALO, NY 14203	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	I: EPA 3510C
Analytical Method:	1,8270E	Extraction Date:	09/15/23 20:36
Analytical Date:	09/17/23 20:57		
Analyst:	СММ		
Percent Solids:	90%		
TCLP/SPLP Ext. Da	ate: 09/13/23 06:26		

Result	Qualifier	Units	RL	MDL	Dilution Factor		
TCLP Semivolatiles by EPA 1311 - Westborough Lab							
ND		ua/l	10	3.4	1		
ND		ug/l	25	1.9	1		
ND		ug/l	10	3.0	1		
ND		ug/l	10	2.2	1		
ND		ug/l	10	3.3	1		
ND		ug/l	25	2.5	1		
ND		ug/l	50	9.8	1		
ND		ug/l	25	5.5	1		
ND		ug/l	25	2.8	1		
ND		ug/l	25	1.9	1		
ND		ug/l	18	4.5	1		
	tborough Lab ND ND ND ND ND ND ND ND ND ND ND ND ND	tborough Lab ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ug/l ND ug/l	ND ug/l 10 ND ug/l 25 ND ug/l 10 ND ug/l 50 ND ug/l 50 ND ug/l 25 ND ug/l 25	ND ug/l 10 3.4 ND ug/l 25 1.9 ND ug/l 10 3.0 ND ug/l 10 3.0 ND ug/l 10 2.2 ND ug/l 10 2.2 ND ug/l 10 3.3 ND ug/l 50 9.8 ND ug/l 50 9.8 ND ug/l 25 5.5 ND ug/l 25 2.8 ND ug/l 25 1.9		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	81	21-120	
Phenol-d6	73	10-120	
Nitrobenzene-d5	77	23-120	
2-Fluorobiphenyl	66	15-120	
2,4,6-Tribromophenol	83	10-120	
4-Terphenyl-d14	73	33-120	

Lab Number:

Report Date:

Project Name: KENSINGTON EXPRESSWAY, NYS RT33

Project Number: 20220255

Method Blank Analysis Batch Quality Control

 Analytical Method:
 1,8270E

 Analytical Date:
 09/17/23 19:22

 Analyst:
 CMM

 TCLP/SPLP Extraction Date:
 09/13/23 06:26

Extraction Method: EPA 3510C Extraction Date: 09/15/23 20:36

L2352639

09/20/23

arameter	Result	Qualifier	Units	RL	MDL
CLP Semivolatiles by EPA 1311	- Westboroug	gh Lab for s	sample(s):	01-02	Batch: WG1828125-1
Hexachlorobenzene	ND		ug/l	10	3.4
2,4-Dinitrotoluene	ND		ug/l	25	1.9
Hexachlorobutadiene	ND		ug/l	10	3.0
Hexachloroethane	ND		ug/l	10	2.2
Nitrobenzene	ND		ug/l	10	3.3
2,4,6-Trichlorophenol	ND		ug/l	25	2.5
Pentachlorophenol	ND		ug/l	50	9.8
2-Methylphenol	ND		ug/l	25	5.5
3-Methylphenol/4-Methylphenol	ND		ug/l	25	2.8
2,4,5-Trichlorophenol	ND		ug/l	25	1.9
Pyridine	ND		ug/l	18	4.5

Surrogate	%Recovery	Qualifier Criteria		
2-Fluorophenol	96	21-120		
Phenol-d6	86	10-120		
Nitrobenzene-d5	90	23-120		
2-Fluorobiphenyl	83	15-120		
2,4,6-Tribromophenol	105	10-120		
4-Terphenyl-d14	90	33-120		

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON EXPRESSWAY, NYS RT33

Project Number: 20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
CLP Semivolatiles by EPA 1311 - Westbor	rough Lab Assoc	iated sample(s): 01-02 Batc	h: WG1828	125-2 WG1828	125-3			
Hexachlorobenzene	71		82		40-140	14		30	
2,4-Dinitrotoluene	75		87		40-132	15		30	
Hexachlorobutadiene	54		66		28-111	20		30	
Hexachloroethane	62		75		21-105	19		30	
Nitrobenzene	66		80		40-140	19		30	
2,4,6-Trichlorophenol	66		79		30-130	18		30	
Pentachlorophenol	74		88		9-103	17		30	
2-Methylphenol	71		88		30-130	21		30	
3-Methylphenol/4-Methylphenol	74		87		30-130	16		30	
2,4,5-Trichlorophenol	69		80		30-130	15		30	
Pyridine	39		8	Q	10-66	132	Q	30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
2-Fluorophenol	88	102	21-120
Phenol-d6	80	93	10-120
Nitrobenzene-d5	74	86	23-120
2-Fluorobiphenyl	72	83	15-120
2,4,6-Tribromophenol	85	95	10-120
4-Terphenyl-d14	78	90	33-120

PESTICIDES

		Serial_No	0:09202316:33
Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23
	SAMPLE RESULTS		
Lab ID:	L2352639-01	Date Collected:	09/11/23 10:35
Client ID:	20220255-FH-X-32E	Date Received:	09/11/23
Sample Location:	BUFFALO, NY 14203	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	I: EPA 3510C
Analytical Method:	1,8081B	Extraction Date:	09/15/23 20:40
Analytical Date:	09/18/23 14:45		
Analyst:	EJL		
Percent Solids:	89%		
TCLP/SPLP Ext. Da	ate: 09/13/23 06:26		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
TCLP Pesticides by EPA 1311 - West	borough Lab						
Lindane	ND		ug/l	0.100	0.022	1	А
Heptachlor	ND		ug/l	0.100	0.016	1	А
Heptachlor epoxide	ND		ug/l	0.100	0.021	1	А
Endrin	ND		ug/l	0.200	0.021	1	А
Methoxychlor	ND		ug/l	1.00	0.034	1	А
Toxaphene	ND		ug/l	1.00	0.314	1	А
Chlordane	ND		ug/l	1.00	0.232	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	98		30-150	А
Decachlorobiphenyl	103		30-150	А
2,4,5,6-Tetrachloro-m-xylene	106		30-150	В
Decachlorobiphenyl	101		30-150	В

		Serial_No	0:09202316:33
Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23
	SAMPLE RESULTS		
Lab ID:	L2352639-01	Date Collected:	09/11/23 10:35
Client ID:	20220255-FH-X-32E	Date Received:	09/11/23
Sample Location:	BUFFALO, NY 14203	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	d: EPA 8151A
Analytical Method:	1,8151A	Extraction Date:	09/14/23 15:34
Analytical Date:	09/17/23 13:21		
Analyst:	EJL		
Percent Solids:	89%		
TCLP/SPLP Ext. Da	ate: 09/13/23 06:26		
Methylation Date:	09/15/23 20:09		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
TCLP Herbicides by EPA 1311	- Westborough Lab						
2,4-D	ND		mg/l	0.025	0.001	1	А
2,4,5-TP (Silvex)	ND		mg/l	0.005	0.001	1	А
Surrogate			% Recovery	Qualifier		eptance iteria Co	lumn
DCAA			33		:	30-150	A

33

DCAA

30-150

В

		Serial_No:09202316:33	
Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number: L2352639	
Project Number:	20220255	Report Date: 09/20/23	
	SAMPLE RESULTS		
Lab ID:	L2352639-02	Date Collected: 09/11/23 11:30)
Client ID:	20220255-FH-X-34E	Date Received: 09/11/23	
Sample Location:	BUFFALO, NY 14203	Field Prep: Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids: TCLP/SPLP Ext. Da	Soil 1,8081B 09/18/23 14:56 EJL 90% ate: 09/13/23 06:26	Extraction Method: EPA 3510C Extraction Date: 09/15/23 20:40)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
TCLP Pesticides by EPA 1311 - Wes	tborough Lab						
Lindane	ND		ug/l	0.100	0.022	1	A
Heptachlor	ND		ug/l	0.100	0.016	1	А
Heptachlor epoxide	ND		ug/l	0.100	0.021	1	А
Endrin	ND		ug/l	0.200	0.021	1	А
Methoxychlor	ND		ug/l	1.00	0.034	1	А
Toxaphene	ND		ug/l	1.00	0.314	1	А
Chlordane	ND		ug/l	1.00	0.232	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	104		30-150	А
Decachlorobiphenyl	119		30-150	А
2,4,5,6-Tetrachloro-m-xylene	112		30-150	В
Decachlorobiphenyl	115		30-150	В

	Serial_No	09202316:33
KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:	L2352639
20220255	Report Date:	09/20/23
SAMPLE RESULTS		
L2352639-02	Date Collected:	09/11/23 11:30
20220255-FH-X-34E	Date Received:	09/11/23
BUFFALO, NY 14203	Field Prep:	Not Specified
	Extraction Methor	Ι· ΕΡΔ 8151Δ
		09/14/23 15:34
09/17/23 13:40		00/11/20 10:01
EJL		
90%		
ate: 09/13/23 06:26		
09/15/23 20:09		
	20220255 SAMPLE RESULTS L2352639-02 20220255-FH-X-34E BUFFALO, NY 14203 Soil 1,8151A 09/17/23 13:40 EJL 90% ate: 09/13/23 06:26	KENSINGTON EXPRESSWAY,NYS RT33Lab Number: Report Date:20220255SAMPLE RESULTSL2352639-02Date Collected: Date Received: Field Prep:20220255-FH-X-34EDate Received: Field Prep:BUFFALO, NY 14203Extraction Method Extraction Date:Soil 1,8151A 09/17/23 13:40Extraction Method Extraction Date:ste:09/13/23 06:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
TCLP Herbicides by EPA 1311	1 - Westborough Lab						
2,4-D	ND		mg/l	0.025	0.001	1	A
2,4,5-TP (Silvex)	ND		mg/l	0.005	0.001	1	А
Surrogate			% Recovery	Qualifier		eptance riteria Co	lumn
DCAA			45		:	30-150	A

43

DCAA

30-150

В

L2352639

09/20/23

Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:
Project Number:	20220255	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:	1,8151A 09/17/23 12:26	Extraction Method: Extraction Date:	EPA 8151A 09/14/23 15:34
Analyst:	EJL		
TCLP/SPLP Extraction Date:	09/13/23 06:26		
Methylation Date:	09/15/23 20:09		

Parameter	Result	Qualifier	Units	R	L	MDL	Column
TCLP Herbicides by EPA 1311 -	Westborough	Lab for san	nple(s):	01-02	Batch:	WG1827626	6-1
2,4-D	ND		mg/l	0.0	25	0.001	А
2,4,5-TP (Silvex)	ND		mg/l	0.0	05	0.001	А

	Acce					
Surrogate	%Recovery	Qualifier	Criteria	Column		
DCAA	128		30-150	А		
DCAA	119		30-150	В		

L2352639

09/20/23

Lab Number:

Report Date:

Project Name: KENSINGTON EXPRESSWAY, NYS RT33

Project Number: 20220255

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:	1,8081B 09/18/23 14:12	Extraction Method: Extraction Date:	EPA 3510C 09/15/23 20:40
Analyst:	EJL		
TCLP/SPLP Extraction Date:	09/13/23 06:26		

Parameter	Result	Qualifier	Units	RL	MDL	Column
TCLP Pesticides by EPA 1311 - We	stborough	Lab for san	nple(s):	01-02 Batch:	WG182812	29-1
Lindane	ND		ug/l	0.100	0.022	А
Heptachlor	ND		ug/l	0.100	0.016	А
Heptachlor epoxide	ND		ug/l	0.100	0.021	А
Endrin	ND		ug/l	0.200	0.021	А
Methoxychlor	ND		ug/l	1.00	0.034	А
Toxaphene	ND		ug/l	1.00	0.314	А
Chlordane	ND		ug/l	1.00	0.232	А

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	98		30-150	A	
Decachlorobiphenyl	92		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	101		30-150	В	
Decachlorobiphenyl	87		30-150	В	

Lab Control Sample Analysis

Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Batch Quality Control	Lab Number:	L2352639
Project Number:	20220255		Report Date:	09/20/23

	LCS		LCSD	%Re	ecovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual L	imits	RPD	Qual	Limits	Column
TCLP Herbicides by EPA 1311 - Westborou	ugh Lab Associate	ed sample(s):	01-02 Batch:	WG1827626-2	WG1827626-3	3			
2,4-D	164	Q	115	3	80-150	35	Q	25	A
2,4,5-TP (Silvex)	52		47	3	80-150	10		25	А

Surrogate	LCS	LCSD	Acceptance
	%Recovery Q	ual %Recovery Qual	Criteria Column
DCAA	59	58	30-150 A
DCAA	57	53	30-150 B

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON EXPRESSWAY, NYS RT33

Project Number: 20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

	LCS		LCSD	9	6Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
TCLP Pesticides by EPA 1311 - Westborough	Lab Associate	ed sample(s):	01-02 Batch:	WG1828129-2	2 WG1828129-3	3			
Lindane	102		104		30-150	2		20	A
Heptachlor	102		110		30-150	8		20	А
Heptachlor epoxide	100		102		30-150	2		20	А
Endrin	102		105		30-150	3		20	А
Methoxychlor	103		106		30-150	3		20	А

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Q	ual %Recovery Q	ual Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	95	110	30-150	А
Decachlorobiphenyl	95	110	30-150	А
2,4,5,6-Tetrachloro-m-xylene	103	117	30-150	В
Decachlorobiphenyl	92	103	30-150	В

METALS

Serial_No:09202316:33

Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23
	SAMPLE RESULTS		
Lab ID:	L2352639-01	Date Collected:	09/11/23 10:
			00/11/00

Client ID: 20220255-FH-X-32E Sample Location: BUFFALO, NY 14203

Sample Depth:

Date Received: Field Prep:

3 10:35 09/11/23 Not Specified

TCLP/SPLP Ext. Date: 09/13/23 06:26

Matrix:	Soil								00,10,20	00.20	
Percent Solids:	89%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
TCLP Metals by EF	PA 1311 -	Mansfield I	Lab								
Arsenic, TCLP	ND		mg/l	1.00	0.0190	1	09/15/23 08:39	09/15/23 15:28	EPA 3015	1,6010D	JMF
Barium, TCLP	0.285	J	mg/l	0.500	0.0210	1	09/15/23 08:39	09/15/23 15:28	EPA 3015	1,6010D	JMF
Cadmium, TCLP	ND		mg/l	0.100	0.0100	1	09/15/23 08:39	09/15/23 15:28	EPA 3015	1,6010D	JMF
Chromium, TCLP	ND		mg/l	0.200	0.0210	1	09/15/23 08:39	09/15/23 15:28	EPA 3015	1,6010D	JMF
Lead, TCLP	ND		mg/l	0.500	0.0270	1	09/15/23 08:39	09/15/23 15:28	EPA 3015	1,6010D	JMF
Mercury, TCLP	ND		mg/l	0.0010	0.0005	1	09/14/23 16:25	5 09/18/23 21:31	EPA 7470A	1,7470A	MJR
Selenium, TCLP	ND		mg/l	0.500	0.0350	1	09/15/23 08:39	09/15/23 15:28	EPA 3015	1,6010D	JMF
Silver, TCLP	ND		mg/l	0.100	0.0280	1	09/15/23 08:39	09/15/23 15:28	EPA 3015	1,6010D	JMF

Serial_No:09202316:33

Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23
	SAMPLE RESULTS		
Lab ID:	L2352639-02	Date Collected:	09/11/23 11:30
Client ID:	20220255-FH-X-34E	Date Received:	09/11/23
Sample Location:	BUFFALO, NY 14203	Field Prep:	Not Specified

Sample Depth:

Field Prep: Not Specified

TCLP/SPLP Ext. Date: 09/13/23 06:26

Matrix:	Soil								00,10,20	00.20	
Percent Solids:	90%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
TCLP Metals by Ef	PA 1311 -	Mansfield I	_ab								
Arsenic, TCLP	ND		mg/l	1.00	0.0190	1	09/15/23 08:39	9 09/15/23 15:25	EPA 3015	1,6010D	JMF
Barium, TCLP	0.328	J	mg/l	0.500	0.0210	1	09/15/23 08:39	9 09/15/23 15:25	EPA 3015	1,6010D	JMF
Cadmium, TCLP	ND		mg/l	0.100	0.0100	1	09/15/23 08:39	9 09/15/23 15:25	EPA 3015	1,6010D	JMF
Chromium, TCLP	ND		mg/l	0.200	0.0210	1	09/15/23 08:39	9 09/15/23 15:25	EPA 3015	1,6010D	JMF
Lead, TCLP	ND		mg/l	0.500	0.0270	1	09/15/23 08:39	9 09/15/23 15:25	EPA 3015	1,6010D	JMF
Mercury, TCLP	ND		mg/l	0.0010	0.0005	1	09/14/23 16:25	5 09/18/23 21:41	EPA 7470A	1,7470A	MJR
Selenium, TCLP	0.0354	J	mg/l	0.500	0.0350	1	09/15/23 08:39	9 09/15/23 15:25	EPA 3015	1,6010D	JMF
Silver, TCLP	ND		mg/l	0.100	0.0280	1	09/15/23 08:39	9 09/15/23 15:25	EPA 3015	1,6010D	JMF

Project Name:KENSINGTON EXPRESSWAY,NYS RT33Project Number:20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
TCLP Metals by EPA 1311 - Mansfield Lab for sample(s): 01-02 Batch: WG1827475-1									
Arsenic, TCLP	ND	mg/l	1.00	0.0190	1	09/15/23 08:39	09/15/23 15:19	1,6010D	JMF
Barium, TCLP	ND	mg/l	0.500	0.0210	1	09/15/23 08:39	09/15/23 15:19	1,6010D	JMF
Cadmium, TCLP	ND	mg/l	0.100	0.0100	1	09/15/23 08:39	09/15/23 15:19	1,6010D	JMF
Chromium, TCLP	ND	mg/l	0.200	0.0210	1	09/15/23 08:39	09/15/23 15:19	1,6010D	JMF
Lead, TCLP	ND	mg/l	0.500	0.0270	1	09/15/23 08:39	09/15/23 15:19	1,6010D	JMF
Selenium, TCLP	ND	mg/l	0.500	0.0350	1	09/15/23 08:39	09/15/23 15:19	1,6010D	JMF
Silver, TCLP	ND	mg/l	0.100	0.0280	1	09/15/23 08:39	09/15/23 15:19	1,6010D	JMF

Prep Information

Digestion Method: EPA 3015

TCLP/SPLP Extraction Date: 09/13/23 06:26

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
TCLP Metals by EPA	1311 - Mansfield Lab	for sample	e(s): 01-	02 Bate	ch: WG182	27476-1			
Mercury, TCLP	ND	mg/l	0.0010	0.0005	1	09/14/23 16:25	09/18/23 21:25	1,7470A	MJR

Prep Information

Digestion Method: EPA 7470A TCLP/SPLP Extraction Date: 09/13/23 06:26

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON EXPRESSWAY, NYS RT33

SSWAY,NYS R133

Project Number: 20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
TCLP Metals by EPA 1311 - Mansfield Lab Ass	ociated sample(s	s): 01-02	Batch: WG18274	75-2				
Arsenic, TCLP	97		-		75-125	-		20
Barium, TCLP	98		-		75-125	-		20
Cadmium, TCLP	97		-		75-125	-		20
Chromium, TCLP	104		-		75-125	-		20
Lead, TCLP	99		-		75-125	-		20
Selenium, TCLP	101		-		75-125	-		20
Silver, TCLP	101		-		75-125	-		20
TCLP Metals by EPA 1311 - Mansfield Lab Ass	ociated sample(s	s): 01-02	Batch: WG18274	76-2				
Mercury, TCLP	90		-		80-120	-		

Matrix Spike Analysis

Project Name:	KENSINGTON EXPRESSWAY, NYS RT33	Batch Quality Control	Lab Number:	L2352639
Project Number:	20220255		Report Date:	09/20/23

Parameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD al Limits
TCLP Metals by EPA 1311 - FH-X-32E	Mansfield Lab	Associated	sample(s): 01	-02 QC Bat	ch ID: \	NG1827475	-3 QC Samp	le: L2352639-01	Client ID:	20220255-
Arsenic, TCLP	ND	1.2	1.16	97		-	-	75-125	-	20
Barium, TCLP	0.285J	20	19.2	96		-	-	75-125	-	20
Cadmium, TCLP	ND	0.53	0.458	86		-	-	75-125	-	20
Chromium, TCLP	ND	2	1.85	92		-	-	75-125	-	20
Lead, TCLP	ND	5.3	4.95	93		-	-	75-125	-	20
Selenium, TCLP	ND	1.2	1.20	100		-	-	75-125	-	20
Silver, TCLP	ND	0.5	0.474	95		-	-	75-125	-	20
TCLP Metals by EPA 1311 - FH-X-32E	Mansfield Lab	Associated	sample(s): 01	-02 QC Bat	ch ID: \	NG1827476	-3 QC Samp	le: L2352639-01	Client ID:	20220255-
Mercury, TCLP	ND	0.025	0.0222	89		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: KENSINGTON EXPRESSWAY,NYS RT33

 Lab Number:
 L2352639

 Report Date:
 09/20/23

Project Number: 20220255

arameter	Native Sample	Duplicate Sample	Units	RPD C	al RPD Limits
CLP Metals by EPA 1311 - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG1827475-4	QC Sample:	L2352639-01	Client ID: 20220255-
Arsenic, TCLP	ND	ND	mg/l	NC	20
Barium, TCLP	0.285J	0.292J	mg/l	NC	20
Cadmium, TCLP	ND	ND	mg/l	NC	20
Chromium, TCLP	ND	ND	mg/l	NC	20
Lead, TCLP	ND	ND	mg/l	NC	20
Selenium, TCLP	ND	ND	mg/l	NC	20
Silver, TCLP	ND	ND	mg/l	NC	20
CLP Metals by EPA 1311 - Mansfield Lab H-X-32E	Associated sample(s): 01-02	QC Batch ID: WG1827476-4	QC Sample:	L2352639-01	Client ID: 20220255-
Mercury, TCLP	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name:	KENSINGTON EXPRESSWAY, NYS RT	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23

SAMPLE RESULTS

Lab ID:	L2352639-01
Client ID:	20220255-FH-X-32E
Sample Location:	BUFFALO, NY 14203

Sample Depth: Matrix:

Soil

Date Collected:09/11/23 10:35Date Received:09/11/23Field Prep:Not Specified

Test Material Information

Source of Material:	Unknown
Description of Material:	Non-Metallic - Damp Soil
Particle Size:	Medium
Preliminary Burning Time (sec):	120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	ls - Westborough Lab			
Ignitability	NI	09/18/23 15:39	1,1030	GEF

Project Name:	KENSINGTON EXPRESSWAY,NYS RT	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23

SAMPLE RESULTS

Lab ID:	L2352639-02
Client ID:	20220255-FH-X-34E
Sample Location:	BUFFALO, NY 14203

Soil

Sample Depth: Matrix: Date Collected:09/11/23 11:30Date Received:09/11/23Field Prep:Not Specified

Test Material Information

Source of Material:	Unknown
Description of Material:	Non-Metallic - Damp Soil
Particle Size:	Medium
Preliminary Burning Time (sec):	120

Parameter	Result		alytical lethod Ana	alyst
Ignitability of Solid	ls - Westborough Lab			
Ignitability	NI	09/18/23 15:39 1	,1030 G	GEF

Serial_No:09202316:33

Project Name:	KENSINGTON EXPRESSWAY,NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2352639-01 20220255-FH-X-3 BUFFALO, NY 14						Received:	09/11/23 10:35 09/11/23 Not Specified	5
Sample Depth: Matrix:	Soil								
Parameter	Result Quali	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	89.0	%	0.100	NA	1	-	09/12/23 12:0	5 121.2540G	ROI

	•								
Solids, Total	89.0	%	0.100	NA	1	-	09/12/23 12:05	121,2540G	ROI
рН (Н)	10.9	SU	-	NA	1	-	09/12/23 20:03	1,9045D	AAS
Cyanide, Reactive	ND	mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:13	125,7.3	QJM
Sulfide, Reactive	ND	mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:28	125,7.3	QJM

Serial_No:09202316:33

Project Name:	KENSINGTON EXPRESSWAY,NYS RT33	Lab Number:	L2352639
Project Number:	20220255	Report Date:	09/20/23

SAMPLE RESULTS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Sample Depth: Matrix:	Soil									
Sample Locatio	n: BUFFALO,	BUFFALO, NY 14203			Field P	rep:	Not Specified			
Lab ID: Client ID:	L2352639-0 20220255-F	-						Collected: Received:	09/11/23 11:30 09/11/23	J

General Chemistry - \	Nestborough Lab								
Solids, Total	89.9	%	0.100	NA	1	-	09/12/23 12:05	121,2540G	ROI
рН (Н)	11.0	SU	-	NA	1	-	09/12/23 20:03	1,9045D	AAS
Cyanide, Reactive	ND	mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:13	125,7.3	QJM
Sulfide, Reactive	51	mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:28	125,7.3	QJM

Project Name:KENSINGTON EXPRESSWAY,NYS RTProject Number:20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst			
General Chemistry - Westborough Lab for sample(s): 01-02 Batch: WG1827663-1												
Sulfide, Reactive	ND	mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:25	125,7.3	QJM			
General Chemistry - Westborough Lab for sample(s): 01-02 Batch: WG1827664-1												
Cyanide, Reactive	ND	mg/kg	10	10.	1	09/14/23 19:10	09/14/23 21:11	125,7.3	QJM			

Lab Control Sample Analysis Batch Quality Control

Project Name:	KENSINGTON EXPRESSWAY, NYS RT33
Project Name:	KENSINGTON EXPRESSWAY, NYS RT3

Project Number: 20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1826701-1				
рН	99	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1827663-2				
Sulfide, Reactive	88	-	60-125	-		40
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1827664-2				
Cyanide, Reactive	70	-	30-125	-		40

Lab Duplicate Analysis Batch Quality Control

Project Name:KENSINGTON EXPRESSWAY,NYS RT33Project Number:20220255

 Lab Number:
 L2352639

 Report Date:
 09/20/23

Parameter		Native	e Samp	ole D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry -	Westborough Lab	Associated sample(s): 0	1-02 (QC Batch ID:	WG1826356-1	QC Sample:	L2352695-01	Client ID:	DUP Sample
Solids, Total			75.3		75.3	%	0		20
General Chemistry -	Westborough Lab	Associated sample(s): 0	1-02 (QC Batch ID:	WG1826701-2	QC Sample:	L2350303-01	Client ID:	DUP Sample
рН			4.36		4.37	SU	0		5
General Chemistry -	Westborough Lab	Associated sample(s): 0	1-02 (QC Batch ID:	WG1827663-3	QC Sample:	L2353315-01	Client ID:	DUP Sample
Sulfide, Reactive			ND		ND	mg/kg	NC		40
General Chemistry -	Westborough Lab	Associated sample(s): 0	1-02 (QC Batch ID:	WG1827664-3	QC Sample:	L2353315-01	Client ID:	DUP Sample
Cyanide, Reactive			ND		ND	mg/kg	NC		40

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
А	Absent

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2352639-01A	Plastic 2oz unpreserved for TS	А	NA		2.8	Y	Absent		TS(7)
	L2352639-01B	Vial Large Septa unpreserved (4oz)	А	NA		2.8	Y	Absent		TCLP-EXT-ZHE(14)
	L2352639-01C	Glass 500ml/16oz unpreserved	A	NA		2.8	Y	Absent		IGNIT-1030(14),REACTS(14),PH- 9045(1),REACTCN(14)
	L2352639-01W	Amber 1000ml unpreserved Extracts	A	NA		2.8	Y	Absent		TCLP-8270(14),HERB-TCLP*(14),PEST- TCLP*(14)
	L2352639-01X	Plastic 120ml HNO3 preserved Extracts	A	NA		2.8	Y	Absent		CD-CI(180),AS-CI(180),BA-CI(180),HG- C(28),PB-CI(180),CR-CI(180),SE-CI(180),AG- CI(180)
	L2352639-01X9	Tumble Vessel	А	NA		2.8	Y	Absent		
	L2352639-01Y	Vial unpreserved Extracts	А	NA		2.8	Y	Absent		TCLP-VOA(14)
	L2352639-01Z	Vial unpreserved Extracts	А	NA		2.8	Y	Absent		TCLP-VOA(14)
	L2352639-02A	Plastic 2oz unpreserved for TS	А	NA		2.8	Y	Absent		TS(7)
	L2352639-02B	Vial Large Septa unpreserved (4oz)	А	NA		2.8	Y	Absent		TCLP-EXT-ZHE(14)
	L2352639-02C	Glass 500ml/16oz unpreserved	A	NA		2.8	Y	Absent		REACTS(14),IGNIT-1030(14),PH- 9045(1),REACTCN(14)
	L2352639-02W	Amber 1000ml unpreserved Extracts	A	NA		2.8	Y	Absent		TCLP-8270(14),HERB-TCLP*(14),PEST- TCLP*(14)
	L2352639-02X	Plastic 120ml HNO3 preserved Extracts	A	NA		2.8	Y	Absent		CD-CI(180),AS-CI(180),BA-CI(180),HG- C(28),PB-CI(180),SE-CI(180),CR-CI(180),AG- CI(180)
	L2352639-02X9	Tumble Vessel	А	NA		2.8	Y	Absent		-
	L2352639-02Y	Vial unpreserved Extracts	А	NA		2.8	Y	Absent		TCLP-VOA(14)
	L2352639-02Z	Vial unpreserved Extracts	А	NA		2.8	Y	Absent		TCLP-VOA(14)

Project Name: KENSINGTON EXPRESSWAY, NYS RT33

Project Number: 20220255

Lab Number: L2352639

Report Date: 09/20/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: KENSINGTON EXPRESSWAY,NYS RT33

Project Number: 20220255

Lab Number:	L2352639
Report Date:	09/20/23

Footnotes

1	- T
1	- 1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: KENSINGTON EXPRESSWAY,NYS RT33

Project Number: 20220255

Lab Number: L2352639

Report Date: 09/20/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: KENSINGTON EXPRESSWAY,NYS RT33 Project Number: 20220255
 Lab Number:
 L2352639

 Report Date:
 09/20/23

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 125 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates IIIA, April 1998.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Way	ŝ	Pag \ o	e of <u>)</u>		Date Re in La	NB-0011	112	12	3	ALPHA JOB# 1235263	1
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Kensi Project Location: B	ngton Expres	Y 142	YSRE 3	3	Deliv	erables ASP-A EQuIS	1 File)		ASP-B EQuIS	(4 File)	Billing Information	
Client Information		Project # 202	20255	-			-	Other					Bottle Octoment \$ 348	191
Client: Watts As		(Use Project name as P	and the second se				and the owner of the	latory Re		nt			Disposal Site Information	
Address: 95 Perr Buffalo N		Project Manager: A. ALPHAQuote #:	Klimek				님	NY TOG		Ц	NY Part NY CP-		Please identify below location of applicable disposal facilities.	£
Phone: 716-206		Turn-Around Time	a state of the state	and a state of the	CTURNED.			NY Restr			Other		Disposal Facility:	
Fax: 716-206	-5199	Standar		Due Date:				NY Unres	tricted Us	e			🗆 NJ 🕅 NY	
Email: aklimeke	?watts-ae.com	Rush (only if pre approved	i) 🗌	# of Days:				NYC Sev	ver Discha	rge			Other:	
These samples have be	aen previously analyze	ed by Alpha 🔲					ANA	LYSIS					Sample Filtration	T
Other project specific Please specify Metals		ents:					L TCLP	, R. I, C.					Done Lab to do Preservation Lab to do (Please Specify below)	tal Bot
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Collect	Time	Sample Matrix	Sampler's Initials	Ful	13					Sample Specific Comments	- 1
52639-01	20220255	- DW-X-32		10:35	Mall	SOIL	X	X		-		-	Sample Specific Comments	5
-02	20220255 -	-DN-X-34		11:30	MAH	SOIL	×	Ŷ						3
A = None I B = HCI	15-0-40 m 1900 m 5-1 M 19 m 19 m 19	Westboro: Certification N Mansfield: Certification N			Con	tainer Type	A	P/A					Please print clearly, legibl and completely. Samples	Red to a
D = H ₂ SO ₄ 0 E = NaOH E F = MeOH 0 G = NaHSO ₄ 0 H = Na ₂ S ₂ O ₃ E K/E = Zn Ac/NaOH 0	V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquished Matthew 2744/1 Lacole m 40	9	Date/ 1-11-83/ 21/11/23		BODY		AA red By: AQU		9]1	Date/T	13:20	not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPH.	are G S
O = Other	Sept-2013)	0	,,	1.100		000		0.0					TERMS & CONDITIONS. (See reverse side.)	5

ANALYTICAL REPORT

La	b Number:	L2353274
Cli	ient:	Watts Architecture & Engineering P.C 95 Perry Street Suite 300 Buffalo, NY 14203
	TN: one:	Andrew Klimek (716) 206-5100
	oject Name: oject Number:	KENSINGTON, NYS RT 33 20220255
Re	eport Date:	09/22/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09222313:04

Project Name: Project Number:	KENSINGTON, NYS RT 33 20220255	3		Lab Number: Report Date:	L2353274 09/22/23
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2353274-01	20220255-FH-X-07E	SOIL	BUFFALO, NY	09/13/23 11:20	09/13/23

Project Name:KENSINGTON, NYS RT 33Project Number:20220255

Lab Number: L2353274 Report Date: 09/22/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: KENSINGTON, NYS RT 33 Project Number: 20220255
 Lab Number:
 L2353274

 Report Date:
 09/22/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Sturgis Melissa Sturgis

Authorized Signature:

Title: Technical Director/Representative

Date: 09/22/23

ORGANICS

VOLATILES

		Serial_N	0:09222313:04
Project Name:	KENSINGTON, NYS RT 33	Lab Number:	L2353274
Project Number:	20220255	Report Date:	09/22/23
	SAMPLE RESULTS		
Lab ID:	L2353274-01	Date Collected:	09/13/23 11:20
Client ID:	20220255-FH-X-07E	Date Received:	09/13/23
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Soil 1,8260D 09/21/23 10:40 MCM		
Percent Solids:	88%		
TCLP/SPLP Ext. Da	ate: 09/20/23 11:01		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
TCLP Volatiles by EPA 1311 - W	/estborough Lab					
Chloroform	ND		ug/l	7.5	2.2	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	5.0	1.8	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
Benzene	ND		ug/l	5.0	1.6	10
Vinyl chloride	ND		ug/l	10	0.71	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,4-Dichlorobenzene	ND		ug/l	25	1.9	10
2-Butanone	ND		ug/l	50	19.	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	79		70-130	
dibromofluoromethane	116		70-130	

L2353274

09/22/23

Lab Number:

Report Date:

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

Mothod Plan

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260D
Analytical Date:	09/21/23 07:37
Analyst:	MCM
TCLP/SPLP Extraction Date:	09/20/23 11:01

Extraction Date: 09/20/23 11:01

arameter	Result	Qualifier Units	RL	MDL	
CLP Volatiles by EPA 1311 - We	stborough Lab	for sample(s):	01 Batch:	WG1830248-5	
Chloroform	ND	ug/l	7.5	2.2	
Carbon tetrachloride	ND	ug/l	5.0	1.3	
Tetrachloroethene	ND	ug/l	5.0	1.8	
Chlorobenzene	ND	ug/l	5.0	1.8	
1,2-Dichloroethane	ND	ug/l	5.0	1.3	
Benzene	ND	ug/l	5.0	1.6	
Vinyl chloride	ND	ug/l	10	0.71	
1,1-Dichloroethene	ND	ug/l	5.0	1.7	
Trichloroethene	ND	ug/l	5.0	1.8	
1,4-Dichlorobenzene	ND	ug/l	25	1.9	
2-Butanone	ND	ug/l	50	19.	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	80		70-130	
dibromofluoromethane	115		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Number: 20220255 Lab Number: L2353274 Report Date: 09/22/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
TCLP Volatiles by EPA 1311 - Westborough	Lab Associated	I sample(s): 0'	1 Batch: WG	1830248-3	WG1830248-4			
Chloroform	98		95		70-130	3	20	
Carbon tetrachloride	100		98		63-132	2	20	
Tetrachloroethene	120		110		70-130	9	20	
Chlorobenzene	100		100		75-130	0	25	
1,2-Dichloroethane	89		86		70-130	3	20	
Benzene	99		95		70-130	4	25	
Vinyl chloride	98		93		55-140	5	20	
1,1-Dichloroethene	110		110		61-145	0	25	
Trichloroethene	95		91		70-130	4	25	
1,4-Dichlorobenzene	100		97		70-130	3	20	
2-Butanone	82		84		63-138	2	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	93	97	70-130
Toluene-d8	97	97	70-130
4-Bromofluorobenzene	78	80	70-130
dibromofluoromethane	107	104	70-130

SEMIVOLATILES

		Serial_No:09222313:04
Project Name:	KENSINGTON, NYS RT 33	Lab Number: L2353274
Project Number:	20220255	Report Date: 09/22/23
	SAMPLE RESULTS	
Lab ID:	L2353274-01	Date Collected: 09/13/23 11:20
Client ID:	20220255-FH-X-07E	Date Received: 09/13/23
Sample Location:	BUFFALO, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 3510C
Analytical Method:	1,8270E	Extraction Date: 09/18/23 20:57
Analytical Date:	09/20/23 01:00	
Analyst:	MG	
Percent Solids:	88%	
TCLP/SPLP Ext. Da	ate: 09/16/23 04:35	

TCLP Semivolatiles by EPA 1311 - Westborough LabHexachlorobenzeneNDug/l102,4-DinitrotolueneNDug/l25HexachlorobutadieneNDug/l10HexachloroethaneNDug/l10NitrobenzeneNDug/l102,4,6-TrichlorophenolNDug/l25		
2,4-DinitrotolueneNDug/l25HexachlorobutadieneNDug/l10HexachloroethaneNDug/l10NitrobenzeneNDug/l10		
2,4-DinitrotolueneNDug/l25HexachlorobutadieneNDug/l10HexachloroethaneNDug/l10NitrobenzeneNDug/l10	3.4	1
HexachloroethaneNDug/l10NitrobenzeneNDug/l10	1.9	1
Nitrobenzene ND ug/l 10	3.0	1
* _	2.2	1
2.4.6-Trichlorophenol ND ug/l 25	3.3	1
a di se di	2.5	1
Pentachlorophenol ND ug/l 50	9.8	1
2-Methylphenol ND ug/l 25	5.5	1
3-Methylphenol/4-Methylphenol ND ug/l 25	2.8	1
2,4,5-Trichlorophenol ND ug/l 25	1.9	1
Pyridine ND ug/l 18	4.5	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	53	21-120	
Phenol-d6	50	10-120	
Nitrobenzene-d5	54	23-120	
2-Fluorobiphenyl	56	15-120	
2,4,6-Tribromophenol	69	10-120	
4-Terphenyl-d14	63	33-120	

Lab Number:

Report Date:

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

Method Blank Analysis Batch Quality Control

Analytical Method:1,8270EAnalytical Date:09/19/23 14:05Analyst:AHTCLP/SPLP Extraction Date:09/16/23 04:35

Extraction Method: EPA 3510C Extraction Date: 09/18/23 20:57

L2353274

09/22/23

Parameter	Result	Qualifier Units	RL	MDL
CLP Semivolatiles by EPA 1311	- Westborougl	n Lab for sample(s):	01 Batch:	WG1828933-1
Hexachlorobenzene	ND	ug/l	10	3.4
2,4-Dinitrotoluene	ND	ug/l	25	1.9
Hexachlorobutadiene	ND	ug/l	10	3.0
Hexachloroethane	ND	ug/l	10	2.2
Nitrobenzene	ND	ug/l	10	3.3
2,4,6-Trichlorophenol	ND	ug/l	25	2.5
Pentachlorophenol	ND	ug/l	50	9.8
2-Methylphenol	ND	ug/l	25	5.5
3-Methylphenol/4-Methylphenol	ND	ug/l	25	2.8
2,4,5-Trichlorophenol	ND	ug/l	25	1.9
Pyridine	ND	ug/l	18	4.5

	Acceptance
%Recovery	Qualifier Criteria
71	21-120
59	10-120
60	23-120
69	15-120
88	10-120
71	33-120
	71 59 60 69 88

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255 Lab Number: L2353274 Report Date: 09/22/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
TCLP Semivolatiles by EPA 1311 - Westboro	ugh Lab Assoc	ciated sample(s)	: 01 Batch:	WG1828933-2 WG1828933-	-3		
Hexachlorobenzene	75		68	40-140	10	30	
2,4-Dinitrotoluene	77		70	40-132	10	30	
Hexachlorobutadiene	62		58	28-111	7	30	
Hexachloroethane	58		51	21-105	13	30	
Nitrobenzene	64		57	40-140	12	30	
2,4,6-Trichlorophenol	84		76	30-130	10	30	
Pentachlorophenol	112	Q	100	9-103	11	30	
2-Methylphenol	73		65	30-130	12	30	
3-Methylphenol/4-Methylphenol	75		66	30-130	13	30	
2,4,5-Trichlorophenol	81		75	30-130	8	30	
Pyridine	53		27	10-66	65	Q 30	

	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qua	al %Recovery Qual	Cillena
2-Fluorophenol	75	68	21-120
Phenol-d6	65	58	10-120
Nitrobenzene-d5	65	57	23-120
2-Fluorobiphenyl	71	68	15-120
2,4,6-Tribromophenol	92	87	10-120
4-Terphenyl-d14	72	66	33-120

PESTICIDES

		Serial_No:09222313:04				
Project Name:	KENSINGTON, NYS RT 33	Lab Number: L2353274				
Project Number:	20220255	Report Date: 09/22/23				
	SAMPLE RESULTS					
Lab ID:	L2353274-01	Date Collected: 09/13/23 11:20				
Client ID:	20220255-FH-X-07E	Date Received: 09/13/23				
Sample Location:	BUFFALO, NY	Field Prep: Not Specified				
Sample Depth:						
Matrix:	Soil	Extraction Method: EPA 3510C				
Analytical Method:	1,8081B	Extraction Date: 09/19/23 19:46				
Analytical Date:	09/20/23 11:25					
Analyst:	АКМ					
Percent Solids:	88%					
TCLP/SPLP Ext. Da	ate: 09/16/23 04:35					

Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
TCLP Pesticides by EPA 1311 - Westborough Lab									
ND		ug/l	0.100	0.022	1	A			
ND		ug/l	0.100	0.016	1	А			
ND		ug/l	0.100	0.021	1	А			
ND		ug/l	0.200	0.021	1	А			
ND		ug/l	1.00	0.034	1	А			
ND		ug/l	1.00	0.314	1	А			
ND		ug/l	1.00	0.232	1	А			
	rough Lab ND ND ND ND ND ND ND	rough Lab ND ND ND ND ND ND ND	ND ug/l ND ug/l	ND ug/l 0.100 ND ug/l 0.100 ND ug/l 0.100 ND ug/l 0.100 ND ug/l 0.200 ND ug/l 1.00 ND ug/l 1.00	ND ug/l 0.100 0.022 ND ug/l 0.100 0.016 ND ug/l 0.100 0.021 ND ug/l 0.200 0.021 ND ug/l 0.200 0.021 ND ug/l 0.200 0.021 ND ug/l 1.00 0.314	ND ug/l 0.100 0.022 1 ND ug/l 0.100 0.016 1 ND ug/l 0.100 0.016 1 ND ug/l 0.100 0.021 1 ND ug/l 0.200 0.021 1 ND ug/l 1.00 0.034 1 ND ug/l 1.00 0.314 1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81		30-150	А
Decachlorobiphenyl	90		30-150	А
2,4,5,6-Tetrachloro-m-xylene	85		30-150	В
Decachlorobiphenyl	99		30-150	В

		Serial_No	:09222313:04
Project Name:	KENSINGTON, NYS RT 33	Lab Number:	L2353274
Project Number:	20220255	Report Date:	09/22/23
	SAMPLE RESULTS		
Lab ID:	L2353274-01	Date Collected:	09/13/23 11:20
Client ID:	20220255-FH-X-07E	Date Received:	09/13/23
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	I: EPA 8151A
Analytical Method:	1,8151A	Extraction Date:	09/18/23 23:23
Analytical Date:	09/20/23 13:18		
Analyst:	MMG		
Percent Solids:	88%		
TCLP/SPLP Ext. Da	ate: 09/16/23 04:35		
Methylation Date:	09/19/23 20:01		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
TCLP Herbicides by EPA 131	1 - Westborough Lab						
2,4-D	ND		mg/l	0.025	0.001	1	A
2,4,5-TP (Silvex)	ND		mg/l	0.005	0.001	1	А
Surrogate			% Recovery	Qualifier		eptance riteria Co	lumn
DCAA			40		3	30-150	A

37

в

30-150

DCAA

L2353274 09/22/23

Project Name:	KENSINGTON, NYS RT 33	Lab Number:
Project Number:	20220255	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8151A	Extraction Method:	EPA 8151A
Analytical Date:	09/19/23 09:12	Extraction Date:	09/18/23 11:11
Analyst:	MMG		
TCLP/SPLP Extraction Date:	09/16/23 04:35		
Methylation Date:	09/19/23 05:55		

Parameter	Result	Qualifier	Units		RL	MDL	Column
TCLP Herbicides by EPA 1311	- Westborough	Lab for sam	nple(s):	01	Batch:	WG1828712-1	
2,4-D	ND		mg/l		0.025	0.001	A
2,4,5-TP (Silvex)	ND		mg/l		0.005	0.001	А

	Accept				
Surrogate	%Recovery	Qualifier	Criteria	Column	
DCAA	65		30-150	А	
DCAA	63		30-150	В	

Lab Number:

Report Date:

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

Method Blank Analysis Batch Quality Control

Analytical Method:1,8081BAnalytical Date:09/20/23 10:49Analyst:AKMTCLP/SPLP Extraction Date:09/16/23 04:35

Extraction Method: EPA 3510C Extraction Date: 09/19/23 19:46

L2353274

09/22/23

Parameter	Result	Qualifier	Units		RL	MDL	Column
TCLP Pesticides by EPA 131	1 - Westborough I	Lab for sam	nple(s):	01	Batch:	WG1829426-1	
Lindane	ND		ug/l		0.100	0.022	А
Heptachlor	ND		ug/l		0.100	0.016	А
Heptachlor epoxide	ND		ug/l		0.100	0.021	А
Endrin	ND		ug/l		0.200	0.021	А
Methoxychlor	ND		ug/l		1.00	0.034	А
Toxaphene	ND		ug/l		1.00	0.314	А
Chlordane	ND		ug/l		1.00	0.232	А

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	95		30-150	A		
Decachlorobiphenyl	106		30-150	А		
2,4,5,6-Tetrachloro-m-xylene	97		30-150	В		
Decachlorobiphenyl	114		30-150	В		

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

 Lab Number:
 L2353274

 Report Date:
 09/22/23

	LCS		LCS	D		%Recovery			RPD	
Parameter	%Recovery	Qual	%Reco	very	Qual	Limits	RPD	Qual	Limits	Column
TCLP Herbicides by EPA 1311 - Westboro	igh Lab Associate	ed sample(s):	01 Bat	ch: WG	1828712-2	WG1828712-3				
2,4-D	100		92			30-150	8		25	A
2,4,5-TP (Silvex)	48		48			30-150	0		25	А

Surrogate	LCS %Recovery 0	LCSD Qual %Recovery	Acceptance Qual Criteria	Column
DCAA	59	57	30-150	A
DCAA	61	59	30-150	B

Lab Control Sample Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255 Lab Number: L2353274 Report Date: 09/22/23

	LCS		I	LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%R	Recover	y Qual	Limits	RPD	Qual	Limits	Column
TCLP Pesticides by EPA 1311 - Westborough	n Lab Associate	ed sample(s):	01	Batch:	WG1829426-2	WG1829426-3				
Lindane	102			112		30-150	9		20	А
Heptachlor	106			122		30-150	14		20	А
Heptachlor epoxide	105			116		30-150	10		20	А
Endrin	106			118		30-150	11		20	А
Methoxychlor	132			158	Q	30-150	18		20	А

	LCS	LCSD	Acceptance	
Surrogate	%Recovery G	Qual %Recovery	Qual Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	91	101	30-150	А
Decachlorobiphenyl	101	113	30-150	А
2,4,5,6-Tetrachloro-m-xylene	94	103	30-150	В
Decachlorobiphenyl	111	124	30-150	В

METALS

Serial_No:09222313:04

L2353274

09/22/23

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

SAMPLE RESULTS

Lab ID:L2353274-01Client ID:20220255-FH-X-07ESample Location:BUFFALO, NY

Sample Depth:

Matrix: Soil Percent Solids: 88%

Report Date:

Lab Number:

Date Collected:09/13/23 11:20Date Received:09/13/23Field Prep:Not Specified

TCLP/SPLP Ext. Date: 09/16/23 04:35

Percent Solids:	88%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
TCLP Metals by EF	PA 1311 -	Mansfield	Lab								
Arsenic, TCLP	ND		mg/l	1.00	0.0190	1	09/19/23 10:53	3 09/19/23 17:21	EPA 3015	1,6010D	JMF
Barium, TCLP	0.715		mg/l	0.500	0.0210	1	09/19/23 10:53	3 09/19/23 17:21	EPA 3015	1,6010D	JMF
Cadmium, TCLP	ND		mg/l	0.100	0.0100	1	09/19/23 10:53	3 09/19/23 17:21	EPA 3015	1,6010D	JMF
Chromium, TCLP	ND		mg/l	0.200	0.0210	1	09/19/23 10:53	3 09/19/23 17:21	EPA 3015	1,6010D	JMF
Lead, TCLP	ND		mg/l	0.500	0.0270	1	09/19/23 10:53	3 09/19/23 17:21	EPA 3015	1,6010D	JMF
Mercury, TCLP	ND		mg/l	0.0010	0.0005	1	09/19/23 12:12	2 09/19/23 15:44	EPA 7470A	1,7470A	GMG
Selenium, TCLP	ND		mg/l	0.500	0.0350	1	09/19/23 10:53	3 09/19/23 17:21	EPA 3015	1,6010D	JMF
Silver, TCLP	ND		mg/l	0.100	0.0280	1	09/19/23 10:53	3 09/19/23 17:21	EPA 3015	1,6010D	JMF

Project Name: KENSINGTON, NYS RT 33 Project Number: 20220255
 Lab Number:
 L2353274

 Report Date:
 09/22/23

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
TCLP Metals by EPA 13	311 - Mansf	ield Lab	for sample	e(s): 01	Batch:	WG18288	77-1			
Arsenic, TCLP	ND		mg/l	1.00	0.0190	1	09/19/23 10:53	09/19/23 16:18	1,6010D	JMF
Barium, TCLP	ND		mg/l	0.500	0.0210	1	09/19/23 10:53	09/19/23 16:18	1,6010D	JMF
Cadmium, TCLP	ND		mg/l	0.100	0.0100	1	09/19/23 10:53	09/19/23 16:18	1,6010D	JMF
Chromium, TCLP	ND		mg/l	0.200	0.0210	1	09/19/23 10:53	09/19/23 16:18	1,6010D	JMF
Lead, TCLP	0.0626	J	mg/l	0.500	0.0270	1	09/19/23 10:53	09/19/23 16:18	1,6010D	JMF
Selenium, TCLP	ND		mg/l	0.500	0.0350	1	09/19/23 10:53	09/19/23 16:18	1,6010D	JMF
Silver, TCLP	ND		mg/l	0.100	0.0280	1	09/19/23 10:53	09/19/23 16:18	1,6010D	JMF

Prep Information

Digestion Method: EPA 3015

TCLP/SPLP Extraction Date: 09/16/23 04:35

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
TCLP Metals by EPA	1311 - Mansfield Lab	for sample	e(s): 01	Batch:	WG18288	81-1			
Mercury, TCLP	ND	mg/l	0.0010	0.0005	1	09/19/23 12:12	09/19/23 15:18	3 1,7470A	GMG

Prep Information

Digestion Method: EPA 7470A TCLP/SPLP Extraction Date: 09/16/23 04:35

Lab Control Sample Analysis

Batch Quality Control

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

 Lab Number:
 L2353274

 Report Date:
 09/22/23

LCS LCSD %Recovery %Recovery Limits Parameter Qual %Recovery RPD **RPD Limits** Qual Qual TCLP Metals by EPA 1311 - Mansfield Lab Associated sample(s): 01 Batch: WG1828877-2 Arsenic, TCLP 95 -75-125 20 -Barium, TCLP 94 75-125 20 --Cadmium, TCLP 90 75-125 20 --Chromium, TCLP 90 75-125 20 --Lead, TCLP 93 75-125 20 --Selenium, TCLP 101 -75-125 20 -Silver, TCLP 92 75-125 20 --TCLP Metals by EPA 1311 - Mansfield Lab Associated sample(s): 01 Batch: WG1828881-2 Mercury, TCLP 80-120 105 --

Matrix Spike Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

 Lab Number:
 L2353274

 Report Date:
 09/22/23

Parameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recov Qual Limi		RPD Qual Limits
TCLP Metals by EPA 131	1 - Mansfield Lab	Associated a	sample(s): 01	QC Batch	ID: WG ²	1828877-3	QC Sample:	L2353896-01	Client ID	MS Sample
Arsenic, TCLP	ND	1.2	1.23	102		-	-	75-12	5 -	20
Barium, TCLP	0.208J	20	19.0	95		-	-	75-12	5 -	20
Cadmium, TCLP	ND	0.53	0.514	97		-	-	75-12	5 -	20
Chromium, TCLP	ND	2	1.96	98		-	-	75-12	5 -	20
Lead, TCLP	ND	5.3	5.12	97		-	-	75-12	5 -	20
Selenium, TCLP	ND	1.2	1.30	108		-	-	75-12	5 -	20
Silver, TCLP	ND	0.5	0.510	102		-	-	75-12	5 -	20
TCLP Metals by EPA 131	1 - Mansfield Lab	Associated s	sample(s): 01	QC Batch	ID: WG ²	1828881-3	QC Sample:	L2354078-01	Client ID	MS Sample
Mercury, TCLP	ND	0.025	0.0260	104		-	-	75-12	5 -	20

Lab Duplicate Analysis Batch Quality Control

Project Name: KENSINGTON, NYS RT 33 Lab Number: L2353274 Report Date: 09/22/23

Project Number: 20220255

Parameter	Native Samp	Duplicate Sample	Units	RPD	Qual	RPD Limits
CLP Metals by EPA 1311 - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1828877-4	QC Sample:	L2353896-01	Client ID:	DUP Sample
Arsenic, TCLP	ND	ND	mg/l	NC		20
Barium, TCLP	0.208J	0.215J	mg/l	NC		20
Cadmium, TCLP	ND	ND	mg/l	NC		20
Chromium, TCLP	ND	ND	mg/l	NC		20
Lead, TCLP	ND	ND	mg/l	NC		20
Selenium, TCLP	ND	ND	mg/l	NC		20
Silver, TCLP	ND	ND	mg/l	NC		20
CLP Metals by EPA 1311 - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1828881-4	QC Sample:	L2354078-01	Client ID:	DUP Sample
Mercury, TCLP	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_	No:09222313:04
---------	----------------

L2353274

09/13/23 11:20

09/13/23 Not Specified

Project Name:KENSINGTON, NYS RT 33Project Number:20220255

SAMPLE RESULTS

Report Date: 09/22/23

Lab Number:

Lab ID:	L2353274-01	Date Collected:
Client ID:	20220255-FH-X-07E	Date Received:
Sample Location:	BUFFALO, NY	Field Prep:

Sample Depth: Matrix:

Soil

Test Material Information

Source of Material:	Unknown
Description of Material:	Non-Metallic - Damp Soil
Particle Size:	Medium
Preliminary Burning Time (sec):	120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	ds - Westborough Lab			
Ignitability	NI	09/21/23 15:18	1,1030	GEF

Serial No:09222313:04

09/15/23 09:36

09/22/23 10:42

09/19/23 09:39 09/19/23 11:30

09/19/23 09:39 09/19/23 11:50

121,2540G

1,9045D

125,7.3

125,7.3

ROI

KEP

JLB

JLB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Sample Depth: Matrix:	Soil									
Lab ID: Client ID: Sample Location:	L2353274-0 20220255-FI BUFFALO, N	H-X-07E						Collected: Received: Prep:	09/13/23 11:20 09/13/23 Not Specified	
				SAMPLE	RESUL	rs				
Project Name: Project Number:	KENSINGTO 20220255	DN, NYS	RT 33					umber: t Date:	L2353274 09/22/23	

0.100

-

10

10

NA

NA

10.

10.

1

1

1

1

-

-

%

SU

mg/kg

mg/kg

Solids, Total

Cyanide, Reactive

Sulfide, Reactive

pH (H)

88.4

9.44

ND

ND

Project Name:KENSINGTON, NYS RT 33Project Number:20220255

 Lab Number:
 L2353274

 Report Date:
 09/22/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab for sa	mple(s): 01	Batch:	WG18	329082-1				
Cyanide, Reactive	ND	mg/kg	10	10.	1	09/19/23 09:39	09/19/23 11:29	125,7.3	JLB
General Chemistry	- Westborough Lab for sa	mple(s): 01	Batch:	WG18	329084-1				
Sulfide, Reactive	ND	mg/kg	10	10.	1	09/19/23 09:39	09/19/23 11:49	125,7.3	JLB

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2353274 Report Date: 09/22/23

Parameter	LCS %Recovery Qua	LCSD I %Recovery Qua	%Recovery al Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1829082-2			
Cyanide, Reactive	122	-	30-125	-	40
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1829084-2			
Sulfide, Reactive	92	-	60-125	-	40
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1830527-1			
рН	100	-	99-101	-	

Project Name:

Project Number:

KENSINGTON, NYS RT 33

20220255

Lab Duplicate Analysis Batch Quality Control

Project Name:KENSINGTON, NYS RT 33Project Number:20220255

 Lab Number:
 L2353274

 Report Date:
 09/22/23

Parameter	Native S	ample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1827827-1	QC Sample: L	2353159-01	Client ID:	DUP Sample
Solids, Total	59.6	6	52.5	%	13		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1829082-3	QC Sample: L	2354033-01	Client ID:	DUP Sample
Cyanide, Reactive	ND		ND	mg/kg	NC		40
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1829084-3	QC Sample: L	2354033-01	Client ID:	DUP Sample
Sulfide, Reactive	ND		ND	mg/kg	NC		40
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1830527-2	QC Sample: L	2349316-05	Client ID:	DUP Sample
рН	4.88	3	4.94	SU	1		5

Project Name: **KENSINGTON, NYS RT 33** Project Number: 20220255

Serial_No:09222313:04 Lab Number: L2353274 *Report Date:* 09/22/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal				
A	Absent				

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2353274-01A	Vial Large Septa unpreserved (4oz)	А	NA		3.9	Y	Absent		TCLP-EXT-ZHE(14)
L2353274-01B	Plastic 2oz unpreserved for TS	А	NA		3.9	Y	Absent		TS(7)
L2353274-01C	Glass 500ml/16oz unpreserved	А	NA		3.9	Y	Absent		IGNIT-1030(14),REACTS(14),PH- 9045(1),REACTCN(14)
L2353274-01W	Amber 1000ml unpreserved Extracts	А	NA		3.9	Y	Absent		TCLP-8270(14),HERB-TCLP*(14),PEST- TCLP*(14)
L2353274-01X	Plastic 120ml HNO3 preserved Extracts	A	NA		3.9	Y	Absent		CD-CI(180),AS-CI(180),BA-CI(180),HG- C(28),PB-CI(180),SE-CI(180),CR-CI(180),AG- CI(180)
L2353274-01X9	Tumble Vessel	А	NA		3.9	Y	Absent		
L2353274-01Y	Vial unpreserved Extracts	А	NA		3.9	Y	Absent		TCLP-VOA(14)
L2353274-01Z	Vial unpreserved Extracts	А	NA		3.9	Y	Absent		TCLP-VOA(14)

Serial_No:09222313:04

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

Lab Number: L2353274

Report Date: 09/22/23

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

Lab Number: L2353274 Report Date: 09/22/23

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: KENSINGTON, NYS RT 33

Project Number: 20220255

Lab Number: L2353274

Report Date: 09/22/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

 Lab Number:
 L2353274

 Report Date:
 09/22/23

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 125 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates IIIA, April 1998.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	<u>Service Centers</u> Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Pa	Date Rec'd in Lab 9/14/23						ALPHA Job # L2353274			
Westborough, MA 01581 8 Walkup Dr. TEL: 506-898-9220 FAX: 506-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288		VS RE 3	3			Deliverables ASP-A ASP-B EQuIS (1 File) EQUIS (4 File)					Billing Information Same as Client Info Pow Per Route			
Client Information	Q ¹	Project Location: Buffalo, NY Project # 2022.0255					S. Other						Bothle order ut 434891		
Client: Watts As	E	(Use Project name as Project #)						ulatory F	lequiren	nent	Disposal Site Information				
Address: 95 Perry 5		Project Manager: A. Klinck ALPHAQuote #: Turn-Around Time Standard X Due Date:						NY TOO	s	E	Please identify below location of				
	14203							AWQ Standards NY CP-51 NY Restricted Use Other NY Unrestricted Use					applicable disposal facilities. Disposal Facility: NJ NY NY		
Phone: 716-206															
Fax: 716-200	5-5199														
Email: akl.mek@		Rush (only if pre approved) # of Days:						NYC Sewer Discharge					Other:		
These samples have b		by Alpha						ANALYSIS					Sample Filtration	T	
Other project specific Please specify Metals		ents:					dT.	J					Done Lab to do Preservation Lab to do	t a I B	
							SI-LTCLP	R.1					(Please Specify below) t		
ALPHA Lab ID (Lab Use Only) Sai		mple ID	Date	Collection Date Time		Sampler's Initials	2	22				-	Sample Specific Comments	- 1	
53274-01	20220255- FH-X-07e		2/13/23	11:20	Matrix Solu	night	X	X	-	-				3	
2361101		11 11 0 16	11.762			- Colori	-	11						1	
		1. 1								1					
		1.										1	A CONTRACT		
		M H I			E										
				1000											
													and the second second		
Preservative Code:	Container Code							D/	_	-				Ц	
a = None a = HCl a = HNO ₃ b = H ₂ SO ₄ a = NaOH	P = Plastic	Westboro: Certification No: MA935 Mansfield: Certification No: MA015				Container Type Preservative		1/A A/A					Please print clearly, legibly and completely. Samples ca not be logged in and turnaround time clock will no start until any ambiguities ar		
= MeOH = NaHSO ₄ = Na ₂ S ₂ O ₃ /E = Zn Ac/NaOH = Other	C = Cube O = Other E = Encore D = BOD Bottle	Religquished Matthe Held ZURT/Cont	Date/ 9/13/2022 5/17/27	3 /12:25 mill 1/		Leceived By:			Date/Time 9/13/33 1225 9/14/28 00:40			resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)			
Pane0305 HC30V. 30-	-Sept-2013)												- 10 M		